S'abonner

An efficient magnetic tight-binding method for transition metals and alloys - 07/01/16

Doi : 10.1016/j.crhy.2015.12.014 
Cyrille Barreteau a, b, , Daniel Spanjaard c , Marie-Catherine Desjonquères a
a SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France 
b DTU NANOTECH, Technical University of Denmark, Ørsteds Plads 344, DK-2800 Kgs. Lyngby, Denmark 
c Laboratoire de physique des solides, Université Paris-Sud, bâtiment 510, 91405 Orsay cedex, France 

Corresponding author.

Bienvenue sur EM-consulte, la référence des professionnels de santé.
Article gratuit.

Connectez-vous pour en bénéficier!

Abstract

An efficient parameterized self-consistent tight-binding model for transition metals using s, p and d valence atomic orbitals as a basis set is presented. The parameters of our tight-binding model for pure elements are determined from a fit to bulk ab-initio calculations. A very simple procedure that does not necessitate any further fitting is proposed to deal with systems made of several chemical elements. This model is extended to spin (and orbital) polarized materials by adding Stoner-like and spin–orbit interactions. Collinear and non-collinear magnetism as well as spin-spirals are considered. Finally the electron–electron intra-atomic interactions are taken into account in the Hartree–Fock approximation. This leads to an orbital dependence of these interactions, which is of a great importance for low-dimensional systems and for a quantitative description of orbital polarization and magneto-crystalline anisotropy. Several examples are discussed.

Le texte complet de cet article est disponible en PDF.

Résumé

Nous présentons un modèle de liaisons fortes paramétré et auto-cohérent utilisant une base d'orbitales atomiques s, p, et d pour décrire les électrons de valence des métaux de transition. Les paramètres du modèle sont déterminés à partir d'un ajustement non linéaire sur des résultats de calculs ab initio d'éléments purs en volume. Notre procédure ne nécessite aucun paramètre ni ajustement supplémentaire pour l'étendre aux systèmes avec plusieurs atomes de natures chimiques différentes. Nous avons généralisé notre modèle aux matériaux présentant une polarisation de spin et orbitale à l'aide de termes de Stoner et de couplage spin–orbite. Nous traitons aussi bien le magnétisme colinéaire que non colinéaire ainsi que les spirales de spin. Enfin nous montrons comment prendre en compte l'interaction électron–électron intra-atomique dans l'approximation de Hartree–Fock. Cela introduit une dépendance orbitale des interactions qui peut s'avérer importante dans les systèmes de basse dimensionalité et pour décrire correctement l'anisotropie magnéto-cristalline et la polarisation orbitale. Nous illustrons notre propos à l'aide de plusieurs exemples.

Le texte complet de cet article est disponible en PDF.

Keywords : Tight-binding, Magnetism, Stoner Model, Spin–orbit coupling, Magneto-crystalline anisotropy, Hartree–Fock

Mots-clés : Liaisons fortes, Magnétisme, Modèle de Stoner, Couplage spin–orbite, Anisotropie magnéto-cristalline, Hartree–Fock


Plan


© 2015  The Authors. Publié par Elsevier Masson SAS de la part de Académie des sciences. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 17 - N° 3-4

P. 406-429 - mars 2016 Retour au numéro
Article précédent Article précédent
  • Structure of covalently bonded materials: From the Peierls distortion to Phase-Change Materials
  • Jean-Pierre Gaspard
| Article suivant Article suivant
  • The beauty of impurities: Two revivals of Friedel's virtual bound-state concept
  • Antoine Georges

Bienvenue sur EM-consulte, la référence des professionnels de santé.

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2025 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.