Molecular characterization of BrMYB28 and BrMYB29 paralogous transcription factors involved in the regulation of aliphatic glucosinolate profiles in Brassica rapa ssp. pekinensis - 13/06/15
pages | 9 |
Iconographies | 9 |
Vidéos | 0 |
Autres | 0 |
Abstract |
Glucosinolates (GSL) are one of the major secondary metabolites of the Brassicaceae family. In the present study, we aim at characterizing the multiple paralogs of aliphatic GSL regulators, such as BrMYB28 and BrMYB29 genes in Brassica rapa ssp. pekinensis, by quantitative real-time PCR (qRT-PCR) analysis in different tissues and at various developmental stages. An overlapping gene expression pattern between the BrMYBs as well as their downstream genes (DSGs) was found at different developmental stages. Among the BrMYB28 and BrMYB29 paralogous genes, the BrMYB28.3 and BrMYB29.1 genes were dominantly expressed in most of the developmental stages, compared to the other paralogs of the BrMYB genes. Furthermore, the differential expression pattern of the BrMYBs was observed under various stress treatments. Interestingly, BrMYB28.2 showed the least expression in most developmental stages, while its expression was remarkably high in different stress conditions. More specifically, the BrMYB28.2, BrMYB28.3, and BrMYB29.1 genes were highly responsive to various abiotic and biotic stresses, further indicating their possible role in stress tolerance. Moreover, the in silico cis motif analysis in the upstream regulatory regions of BrMYBs showed the presence of various putative stress-specific motifs, which further indicated their responsiveness to biotic and abiotic stresses. These observations suggest that the dominantly expressed BrMYBs, both in different developmental stages and under various stress treatments (BrMYB28.3 and BrMYB29.1), may be potential candidate genes for altering the GSL level through genetic modification studies in B. rapa ssp. pekinensis.
Le texte complet de cet article est disponible en PDF.Keywords : Abscisic acid, Brassica rapa ssp. pekinensis, Differential gene expression, In silico analysis, Cis Motifs, QRT-PCR, Glucosinolates
Plan
Vol 338 - N° 7
P. 434-442 - juillet 2015 Retour au numéroBienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.
Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’achat d’article à l’unité est indisponible à l’heure actuelle.
Déjà abonné à cette revue ?