Discrete-wavelet-transform-based noise removal and feature extraction for ECG signals - 02/12/14
pages | 11 |
Iconographies | 16 |
Vidéos | 0 |
Autres | 0 |
Abstract |
Nowadays, doctors use electrocardiogram (ECG) to diagnose heart diseases commonly. However, some nonideal effects are often distributed in ECG. Discrete wavelet transform (DWT) is efficient for nonstationary signal analysis. In this paper, the Symlets sym5 is chosen as the wavelet function to decompose recorded ECG signals for noise removal. Soft-thresholding method is then applied for feature detection. To detect ECG features, R peak of each heart beat is first detected, and the onset and offset of the QRS complex are then detected. Finally, the signal is reconstructed to remove high frequency interferences and applied with adaptive searching window and threshold to detect P and T waves. We use the MIT-BIH arrhythmia database for algorithm verification. For noise reduction, the SNR improvement is achieved at least 10 dB at SNR 5 dB, and most of the improvement SNR are better than other methods at least 1 dB at different SNR. When applying to the real portable ECG device, all R peaks can be detected when patients walk, run, or move at the speed below 9 km/h. The performance of delineation on database shows in our algorithm can achieve high sensitivity in detecting ECG features. The QRS detector attains a sensitivity over 99.94%, while detectors of P and T waves achieve 99.75% and 99.7%, respectively.
Le texte complet de cet article est disponible en PDF.Plan
Vol 35 - N° 6
P. 351-361 - décembre 2014 Retour au numéroBienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.
Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’achat d’article à l’unité est indisponible à l’heure actuelle.
Déjà abonné à cette revue ?