S'abonner

Discrete-wavelet-transform-based noise removal and feature extraction for ECG signals - 02/12/14

Doi : 10.1016/j.irbm.2014.10.004 
H.-Y. Lin a, S.-Y. Liang a, Y.-L. Ho b, Y.-H. Lin b, H.-P. Ma a,
a Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan 
b Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University, Taipei, Taiwan 

Corresponding author.

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

pages 11
Iconographies 16
Vidéos 0
Autres 0

Abstract

Nowadays, doctors use electrocardiogram (ECG) to diagnose heart diseases commonly. However, some nonideal effects are often distributed in ECG. Discrete wavelet transform (DWT) is efficient for nonstationary signal analysis. In this paper, the Symlets sym5 is chosen as the wavelet function to decompose recorded ECG signals for noise removal. Soft-thresholding method is then applied for feature detection. To detect ECG features, R peak of each heart beat is first detected, and the onset and offset of the QRS complex are then detected. Finally, the signal is reconstructed to remove high frequency interferences and applied with adaptive searching window and threshold to detect P and T waves. We use the MIT-BIH arrhythmia database for algorithm verification. For noise reduction, the SNR improvement is achieved at least 10 dB at SNR 5 dB, and most of the improvement SNR are better than other methods at least 1 dB at different SNR. When applying to the real portable ECG device, all R peaks can be detected when patients walk, run, or move at the speed below 9 km/h. The performance of delineation on database shows in our algorithm can achieve high sensitivity in detecting ECG features. The QRS detector attains a sensitivity over 99.94%, while detectors of P and T waves achieve 99.75% and 99.7%, respectively.

Le texte complet de cet article est disponible en PDF.

Plan


© 2014  Publié par Elsevier Masson SAS.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 35 - N° 6

P. 351-361 - décembre 2014 Retour au numéro
Article précédent Article précédent
  • Accurate and reliable 3-lead to 12-lead ECG reconstruction methodology for remote health monitoring applications
  • S. Maheshwari, A. Acharyya, P. Rajalakshmi, P.E. Puddu, M. Schiariti
| Article suivant Article suivant
  • Ultra low-power smart medical sensor node based on a central venous catheter for in-body biomonitoring
  • M. Alonso-Arce, P. Bustamante, C. Schmidt, J. Legarda, B. Sedano

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’achat d’article à l’unité est indisponible à l’heure actuelle.

Déjà abonné à cette revue ?

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2025 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.