S'abonner

EPA-1579 - Classifying schizophrenia using joint multivariate pattern recognition analysis of brain function and structure - 01/08/14

Doi : 10.1016/S0924-9338(14)78735-8 
L. Kambeitz-Ilankovic 1, N. Koutsouleris 1, S. Von Saldern 1, P. Falkai 1, C. Cabral 1
1 Clinic for Psychiatry and Psychotherapy, Ludwig-Maximilians-University, Munich, Germany 

Résumé

Background

Previous studies have shown that structural brain changes are among the best-studied candidate markers for schizophrenia (SZ) along with global functional connectivity (FC) alterations of resting-state (RS) networks. Only few studies tried to combine these data domains to outperform unimodal pattern classification approaches. We aimed at distinguishing SZ patients from healthy controls (HC) at the single-subject level by applying multivariate pattern recognition analysis to both gray matter (GM) volume and FC measures.

Methods

The RS functional and structural MRI data from 74 HC and 71 patients with SZ were obtained from the publicly available COBRE database. The machine learning pipeline wrapped into repeated nested cross-validation was used to train a multi-modal diagnostic system and evaluate its generalization capacity in new subjects.

Results

Both functional and structural classifiers were able to distinguish between HC and SZ patients with similar accuracies. The RS classifier was showing a slightly higher accuracy (75%) comparing to GM volume classifier (74.4%). Ensemble-based data fusion outperformed pattern classification based on single MRI modalities by reaching 76.6% accuracy, as determined by cross-validation. Further analysis showed that RS classification was less sensitive to age-related effects across the life span than GM volume.

Discussion

Our findings suggest that age plays an important role in discriminating SZ patients from HC, but that RS is more robust towards age-differences compared to GM volume. Single neuroimaging modalities provide useful insight into brain function or structure, while multimodal fusion emphasizes the strength of each and provides higher accuracy in discriminating SZ patients from HC.

Le texte complet de cet article est disponible en PDF.

© 2014  Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 29 - N° S1

P. 1 - 2014 Retour au numéro
Article précédent Article précédent
  • EPA-1578 - Modifications of human brain activity due to transcranial direct current stimulation (tdcs) in patients with nicotine dependence
  • N. Reichenbach, S. Karch, J. Klemme, D. Keeser, H. Ludwig, A. Zeren, M. Paolini, J. Blautzik, O. Pogarell, F. Padberg, T. Rüther
| Article suivant Article suivant
  • EPA-1580 - Activation of the norm memory matrix towards the effective psychological effect on somatic disease
  • B. Mykhaylov, A. Kashpirovskiy

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Déjà abonné à cette revue ?

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2025 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.