Molecular profiling of contact dermatitis skin identifies allergen-dependent differences in immune response - 01/08/14
Abstract |
Background |
Allergic contact dermatitis (ACD) is the most common occupational disease. Although murine contact hypersensitivity provides a framework for understanding ACD, it carries important differences from its human counterpart. Unlike the contact hypersensitivity model, which is induced by potent sensitizers (ie, dinitrofluorobenzene), human ACD is induced by weak-to-moderate sensitizers (ie, nickel), which cannot induce reactions in mice. Distinct hapten-specific immune-polarizing responses to potent inducers were suggested in mice, with unclear relevance to human ACD.
Objective |
We explored the possibility of distinct T-cell polarization responses in skin to common clinically relevant ACD allergens.
Methods |
Gene-expression and cellular studies were performed on common allergens (ie, nickel, fragrance, and rubber) compared with petrolatum-occluded skin, using RT-PCR, gene arrays, and immunohistochemistry.
Results |
Despite similar clinical reactions in all allergen groups, distinct immune polarizations characterized different allergens. Although the common ACD transcriptome consisted of 149 differentially expressed genes across all allergens versus petrolatum, a much larger gene set was uniquely altered by individual allergens. Nickel demonstrated the highest immune activation, with potent inductions of innate immunity, TH1/TH17 and a TH22 component. Fragrance, and to a lesser extent rubber, demonstrated a strong TH2 bias, some TH22 polarization, and smaller TH1/TH17 contributions.
Conclusions |
Our study offers new insights into the pathogenesis of ACD, expanding the understanding of T-cell activation and associated cytokines in allergen-reactive tissues. It is the first study that defines the common transcriptome of clinically relevant sensitizers in human skin and identifies unique pathways preferentially activated by different allergens, suggesting that ACD cannot be considered a single entity.
Le texte complet de cet article est disponible en PDF.Key words : Allergic contact dermatitis, patch testing, T-cell polarization, human skin, allergens, nickel, fragrance, rubber
Abbreviations used : ACD, AD, CCL13, CCL17, CCL18, CCL26, CHS, CTLA4, CXCL1, CXCL2, CXCL9, CXCL10, CXCL11, DC, DEG, IHC, PI3, RT-PCR, S100A
Plan
J.G.K., M.S.-F., J.C.d.R., M.R., T.C., and N.D. were supported by the National Center for Research Resources (NCRR) (grant no. 5UL1RR024143-02), a component of the National Institutes of Health (NIH), and the NIH Roadmap for Medical Research. E.G.-Y. was supported by the Dermatology Foundation Physician Scientist Career Development Award. |
|
Disclosure of potential conflict of interest: Y. D. Estrada has received research support from the National Institutes of Health. J. G. Krueger has received consultancy fees from Centocor, Lilly, and Pfizer and has received research support from Amgen, Centocor, Lilly, Merck, and Pfizer. E. Guttman-Yassky has received research support from Novartis, Janssen, Leo-Pharma, Bristol Meyers Squib, Dermira, Celgene, and Regeneron and has received personal fees from Leo-Pharma, Genentech, Dermira, Celgene, Stiefel/GSK, Pfizer, Medimmune, Anaptysbio, and Regeneron. The rest of the authors declare that they have no relevant conflicts of interest. |
Vol 134 - N° 2
P. 362-372 - août 2014 Retour au numéroBienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.
Déjà abonné à cette revue ?