S'abonner

Cell polarization energy and its implications for cell migration - 28/05/14

Doi : 10.1016/j.crme.2014.02.006 
Yuan Zhong, Shijie He, Chunying Dong, Baohua Ji , Gengkai Hu
 Biomechanics and biomaterials laboratory, School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China 

Corresponding author. Tel.: +86 10 68918309.

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

pages 13
Iconographies 10
Vidéos 0
Autres 0

Abstract

Cells usually have a polarized shape in directional cell migration. This cell polarity may result from external cues, such as a gradient of chemo-attractants (chemotaxis), or a gradient of mechanical properties of substrate (durotaxis), and it can also arise from internal cues so that the cells self-polarize spontaneously and maintain the polar motile state for a long time. However, the mechanisms that control cell polarization have not been fully understood, and particularly, the relationship between the polarized shape and cell migration behaviors is not yet clear. In this study, we propose an energy model to study the cell polarization energy by considering the effect of matrix rigidity, cell shape, and organization of the cytoskeleton. We then propose a parameter called “motility factor” for depicting the relationship between the cell shape and the driving force of cell migration. We demonstrate that the fibroblast-like cell shape and keratocyte-like shape both have an optimal polarization angle corresponding to the most stable cell shape. Fibroblast-like cell shape also has an optimal tail length of the polarization. Furthermore, we find that the cell free energy biphasically depends on the matrix rigidity, i.e. that there is an optimum matrix rigidity for the most stable shape. And the motility factor also biphasically depends on the matrix rigidity, but the trends of the dependence are opposite to that of cell's free energy, which implies an optimum matrix rigidity for the highest speed. The optimum matrix rigidity for the most stable cell shape and that for the highest cell speed are consistent, suggesting that the most stable cell shape is favorable to the fastest cell migration. This study provides important insights into the relationship between cell polarization shape and cell migration behaviors.

Le texte complet de cet article est disponible en PDF.

Keywords : Cell shape, Cell polarity, Matrix rigidity, Cell adhesion, Driving force of cell migration


Plan


© 2014  Académie des sciences. Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 342 - N° 5

P. 334-346 - mai 2014 Retour au numéro
Article précédent Article précédent
  • A stochastic homogenization approach to estimate bone elastic properties
  • Vittorio Sansalone, Salah Naili, Christophe Desceliers

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’achat d’article à l’unité est indisponible à l’heure actuelle.

Déjà abonné à cette revue ?

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2024 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.