S'abonner

A stochastic homogenization approach to estimate bone elastic properties - 28/05/14

Doi : 10.1016/j.crme.2013.12.007 
Vittorio Sansalone a, b, , Salah Naili a, b, Christophe Desceliers b
a Université Paris-Est, Laboratoire Modélisation et Simulation Multi-Échelle, MSME UMR 8208 CNRS, 61, Av. du Général de Gaulle, 94010 Créteil, France 
b Université Paris-Est, Laboratoire Modélisation et Simulation Multi-Échelle, MSME UMR 8208 CNRS, 5, bd Descartes, 77454 Marne-la-Vallée, France 

Corresponding author.

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

pages 8
Iconographies 3
Vidéos 0
Autres 0

Abstract

The mechanical properties of bone tissue depend on its hierarchical structure spanning many length scales, from the organ down to the nanoscale. Multiscale models allow estimating bone mechanical properties at the macroscale based on information on bone organization and composition at the lower scales. However, the reliability of these estimates can be questioned in view of the many uncertainties affecting the information which they are based on. In this paper, a new methodology is proposed, coupling probabilistic modeling and micromechanical homogenization to estimate the material properties of bone while taking into account the uncertainties on the bone micro- and nanostructure. Elastic coefficients of bone solid matrix are computed using a three-scale micromechanical homogenization method. A probabilistic model of the uncertain parameters allows propagating the uncertainties affecting their actual values into the estimated material properties of bone. The probability density functions of the random variables are constructed using the Maximum Entropy principle. Numerical simulations are used to show the relevance of this approach.

Le texte complet de cet article est disponible en PDF.

Résumé

Les propriétés mécaniques du tissu osseux dépendent de sa structure hiérarchisée, de l'échelle de l'organe à celle de ses constituants élémentaires (nano-échelle). En se basant sur la connaissance de la morphologie, de l'organisation et des propriétés mécaniques de ces derniers, des modèles multi-échelles permettent d'estimer les propriétés mécaniques d'ensemble du tissu osseux. Cependant, ces informations sont souvent partielles ou incertaines, rendant peu fiables lesdites estimations. Dans cet article, nous proposons une stratégie originale permettant de prendre en compte ces difficultés de façon efficace. Plus précisément, un modèle multi-échelles du tissu osseux basé sur la théorie de la micromécanique des milieux continus est associé à un traitement probabiliste de certaines des variables du modèle (notamment, les propriétés mécaniques des constituants élémentaires du tissu osseux). Le modèle multi-échelle permet de prendre en compte la microarchitecture et l'organisation du tissu osseux aux petites échelles pour estimer les coefficients élastiques de l'ultrastructure osseuse (la matrice solide du tissu osseux). Les incertitudes sur les variables d'entrée sont prises en compte en construisant des lois de probabilités pertinentes basées sur le principe du maximum d'entropie. Quelques résultats numériques sont montrés pour étayer l'intérêt de cette approche.

Le texte complet de cet article est disponible en PDF.

Keywords : Biomechanics, Continuum micromechanics, Stochastic modeling, Maximum entropy principle, Elastic properties

Mots-clés : Biomécanique, Micromécanique des milieux continus, Modélisation stochastique, Principe du maximum d'entropie, Propriétés élastiques


Plan


© 2014  Académie des sciences. Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 342 - N° 5

P. 326-333 - mai 2014 Retour au numéro
Article précédent Article précédent
  • Determinations of both length scale and surface elastic parameters for fcc metals
  • Jingru Song, Jianyun Liu, Hansong Ma, Lihong Liang, Yuegaung Wei
| Article suivant Article suivant
  • Cell polarization energy and its implications for cell migration
  • Yuan Zhong, Shijie He, Chunying Dong, Baohua Ji, Gengkai Hu

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’achat d’article à l’unité est indisponible à l’heure actuelle.

Déjà abonné à cette revue ?

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2024 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.