Limit analysis and lower/upper bounds to the macroscopic criterion of Drucker–Prager materials with spheroidal voids - 21/02/14
pages | 10 |
Iconographies | 8 |
Vidéos | 0 |
Autres | 0 |
Abstract |
The paper is devoted to a numerical Limit Analysis of a hollow spheroidal model with a Drucker–Prager solid matrix, for several values of the corresponding friction angle ϕ. In the first part of this study, the static and the mixed kinematic 3D-codes recently evaluated in [[1]] are modified to use the geometry defined in [[2]] for spheroidal cavities in the context of a von Mises matrix. The results in terms of macroscopic criteria are satisfactory for low and medium values of ϕ, but not enough for in the highly compressive part of the criterion. To improve these results, an original mixed approach, dedicated to the axisymmetric case, was elaborated with a specific discontinuous quadratic velocity field associated with the triangular finite element. Despite the less good conditioning inherent to the axisymmetric modelization, the resulting conic programming problem appears quite efficient, allowing one take into account numerical discretization refinements unreachable with the corresponding 3D mixed code. After a first validation in the case of spherical cavities whose exact solution is known, the final results for spheroidal voids are given for three usual values of the friction angle and two values of the cavity aspect factor.
Le texte complet de cet article est disponible en PDF.Keywords : Gurson-type models, Spheroidal voids, Micromechanics, Limit analysis, Upper and lower bounds, Conic programming
Plan
Vol 342 - N° 2
P. 96-105 - février 2014 Retour au numéroBienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.
Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’achat d’article à l’unité est indisponible à l’heure actuelle.
Déjà abonné à cette revue ?