S'abonner

From 120 to 32 nm CMOS technology: development of OPC and RET to rescue optical lithography - 14/02/08

Doi : 10.1016/j.crhy.2006.10.001 
Yorick Trouiller
CEA/LETI, Minatec, 17, rue des Martyrs, 38054 Grenoble cedex 09, France 

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

pages 9
Iconographies 0
Vidéos 0
Autres 0

Abstract

Starting from the 120 nm CMOS technology node down to the 32 nm node, we have entered into a new lithographic regime. The wavelength has not changed (only 193 nm), and we move closer and closer to the theoretical optical resolution limit. Therefore, Resolution Enhancement Techniques (RET) have been developed in order to print all shapes properly and close the resolution gap. The primary RET developed are off-axis illumination, sub-resolution assist features and a phase shift mask. Moreover, working closer to the resolution limit implies bigger image distortion between the mask and the silicon. For this purpose OPC (Optical Proximity Correction) has been widely used by making mask pre-compensation of all non linear effects, optical diffraction and interference effects, resist and etch. RET and OPC are also fundamentally linked. RET such as off-axis illumination generates more distortion, and therefore justifies the need of more aggressive OPC, and RET techniques like Alt PSM and sub-resolution assist features are generated through the OPC infrastructure. From its first industrial utilization for 120 nm node to 32 nm prospectively, many evolutions have been seen for OPC. These include the generalisation to all lithographic layers, moving to pixel based simulation, usage of full chip simulation and verification, the incorporation of process window effects like Energy Latitude or Depth of Focus into the OPC algorithm, and inverse lithography approach. For RET, we have seen huge differentiation depending on the type of application, such as logic or memory. In conclusion, we need to consider design as a third party that is playing a key role in this RET-OPC synergy. To use more aggressive RET and reduce the cycle time of OPC recipe development, more regular designs are considered as a key enabler for the future: they will allow logic makers to consider RET options that are pushed as far as those used by memory makers. To cite this article: Y. Trouiller, C. R. Physique 7 (2006).

Le texte complet de cet article est disponible en PDF.

Résumé

A partir de la génération CMOS 120 nm jusquʼà la prochaine plateforme 32 nm, nous sommes entrés dans un nouveau régime lithographique : plus de changement de longueur dʼonde (fixée à 193 nm), et de plus en plus près de la résolution théorique ultime. Dans ce contexte, des techniques visant à améliorer la résolution dénommées RET (Resolution Enhancement Techniques) ont été développées pour imprimer les formes correctement et réduire lʼécart dans la résolution accessible. Le premières RET développées ont été des illuminations hors axe, des motifs diffractants sous résolus et des masques à décalage de phase. En outre, travailler proche de la résolution limite implique une plus grande distorsion entre lʼimage voulue du masque et lʼimage réelle sur la plaquette de silicium. A cet effet, des corrections dʼeffets de proximité appelées OPC (Optical Proximity Corrections) ont été utilisées largement pour précompenser sur le masque tous les effets non-linéaires, la diffraction optique et les effets dʼinterférence, la résine et la gravure. Ces technologies OPC et RET sont fondamentalement liées : les techniques RET comme lʼillumination hors axe génèrent plus de distorsion et justifient donc le besoin dʼOPC plus agressive, et en même temps bon nombres de techniques RET (comme les PSM alternés et les motifs diffractants sous résolus) sont créés grâce aux outils informatiques mis en place en OPC. Depuis sa première utilisation industrielle pour le nœud 120 nm jusquʼaux perspectives en 32 nm lʼOPC a vu bien des évolutions. Ceci inclut la généralisation à tous les niveaux lithographiques, le passage à la simulation au niveau du pixel, lʼusage de la simulation et de la vérification de toute la puce, lʼincorporation dans lʼalgorithme dʼOPC des effets de fenêtre de procédé comme la latitude dʼexposition ou la profondeur de champ, ainsi que lʼapproche par lithographie inverse. Pour la RET on a vu une forte différentiation en fonction du type dʼapplication comme la logique ou les mémoires. En conclusion nous devons considérer la conception du circuit comme une tierce partie qui joue un rôle clé dans cette synergie RET-OPC. Pour utiliser une RET plus agressive et réduire le temps de cycle de développement des recettes dʼOPC, des motifs plus réguliers sont considérés comme clés pour le futur : ils permettront aux fabricants de circuits logiques de considérer des options de RET aussi poussées que celles utilisées par les fabricants de mémoires. Pour citer cet article : Y. Trouiller, C. R. Physique 7 (2006).

Le texte complet de cet article est disponible en PDF.

Keywords : OPC, RET, Optical lithography

Mots-clés : OPC, RET, Lithographie optique


Plan

Plan indisponible

© 2006  Publié par Elsevier Masson SAS de la part de Académie des sciences.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 7 - N° 8

P. 887-895 - octobre 2006 Retour au numéro
Article précédent Article précédent
  • EUV lithography
  • Kevin Kemp, Stefan Wurm
| Article suivant Article suivant
  • Advanced mask manufacturing
  • Carlo Reita

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’achat d’article à l’unité est indisponible à l’heure actuelle.

Déjà abonné à cette revue ?

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2024 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.