S'abonner

Pyrazinoic acid efflux rate in Mycobacterium tuberculosis is a better proxy of pyrazinamide resistance - 02/02/12

Doi : 10.1016/j.tube.2011.09.002 
Mirko Zimic a, , Patricia Fuentes a, Robert H. Gilman a, b, Andrés H. Gutiérrez a, Daniela Kirwan c, Patricia Sheen a
a Laboratorio de Bioinformática y Biología Molecular, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Av. Honorio Delgado 430, San Martín de Porres, Lima, Perú 
b Department of International Health, School of Public Health, Johns Hopkins University, Baltimore, USA 
c Department of Infectious Diseases and Immunity, Imperial College London, London W6 0DT, UK 

Corresponding author. Universidad Peruana Cayetano Heredia, Facultad de Ciencias y Filosofía, Laboratorios de Investigación y Desarrollo, Av. Honorio Delgado 430, SMP, Lima 31, Peru. Tel.: +51 1 3190000x2604.

Summary

Pyrazinamide is one of the most important drugs in the treatment of latent Mycobacterium tuberculosis infection. The emergence of strains resistant to pyrazinamide represents an important public health problem, as both first- and second-line treatment regimens include pyrazinamide. The accepted mechanism of action states that after the conversion of pyrazinamide into pyrazinoic acid by the bacterial pyrazinamidase enzyme, the drug is expelled from the bacteria by an efflux pump. The pyrazinoic acid is protonated in the extracellular environment and then re-enters the mycobacterium, releasing the proton and causing a lethal disruption of the membrane. Although it has been shown that mutations causing significant loss of pyrazinamidase activity significantly contribute to pyrazinamide resistance, the mechanism of resistance is not completely understood.

The pyrazinoic acid efflux rate may depend on multiple factors, including pyrazinamidase activity, intracellular pyrazinamidase concentration, and the efficiency of the efflux pump. Whilst the importance of the pyrazinoic acid efflux rate to the susceptibility to pyrazinamide is recognized, its quantitative effect remains unknown.

Thirty-four M. tuberculosis clinical isolates and a Mycobacterium smegmatis strain (naturally resistant to PZA) were selected based on their susceptibility to pyrazinamide, as measured by Bactec 460TB and the Wayne method. For each isolate, the initial velocity at which pyrazinoic acid is released from the bacteria and the initial velocity at which pyrazinamide enters the bacteria were estimated.

The data indicated that pyrazinoic acid efflux rates for pyrazinamide-susceptible M. tuberculosis strains fell within a specific range, and M. tuberculosis strains with a pyrazinoic acid efflux rate below this range appeared to be resistant. This finding contrasts with the high pyrazinoic acid efflux rate for M. smegmatis, which is innately resistant to pyrazinamide: its pyrazinoic acid efflux rate was found to be 900 fold higher than the average efflux rate for M. tuberculosis strains.

No significant variability was observed in the pyrazinamide flux rate. The pyrazinoic acid efflux rate explained 61% of the variability in Bactec pyrazinamide susceptibility, 24% of Wayne activity, and 51% of the Bactec 460TB growth index. In contrast, pyrazinamidase activity accounted for only 27% of the Bactec pyrazinamide susceptibility. This finding suggests that mechanisms other than pncA mutations (reduction of pyrazinamidase activity) are also implicated in pyrazinamide resistance, and that pyrazinoic acid efflux rate acts as a better proxy for pyrazinamide resistance than the presence of pncA mutations. This is relevant to the design of molecular diagnostics for pyrazinamide susceptibility, which currently rely on pncA gene mutation detection.

Le texte complet de cet article est disponible en PDF.

Keywords : Mycobacterium tuberculosis, POA efflux rate, PZA flux rate, PZA resistance


Plan


© 2011  Elsevier Ltd. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 92 - N° 1

P. 84-91 - janvier 2012 Retour au numéro
Article précédent Article précédent
  • High throughput screening of a library based on kinase inhibitor scaffolds against Mycobacterium tuberculosis H37Rv
  • Robert C. Reynolds, Subramaniam Ananthan, Ellen Faaleolea, Judith V. Hobrath, Cecil D. Kwong, Clinton Maddox, Lynn Rasmussen, Melinda I. Sosa, Elizabeth Thammasuvimol, E. Lucile White, Wei Zhang, John A. Secrist
| Article suivant Article suivant
  • Mycobacterium tuberculosis “Beijing” epidemics: A race against mutations?
  • P. Bhatter, A. Chatterjee, N. Mistry

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Déjà abonné à cette revue ?

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2024 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.