Fexofenadine modulates T-cell function, preventing allergen-induced airway inflammation and hyperresponsiveness - 01/09/11
Abstract |
Background: Antihistamines have been evaluated for usefulness in the treatment of asthma for more than 50 years. Interest was limited until the introduction of newer compounds that were free of much of the dose-limiting sedation associated with the earlier drugs. Objective: In a murine model of allergen-induced airway inflammation and hyperresponsiveness, the efficacy of an H1 receptor antagonist to prevent allergic inflammation and altered airway function was evaluated. Methods: Mice were sensitized and challenged to an allergen, ovalbumin, which elicited marked airway and tissue eosino-philia and airway hyperresponsiveness. Fexofenadine was administered before challenge, and airway responsiveness to inhaled methacholine, airway and tissue eosinophilia, bronchoalveolar lavage fluid cytokine levels, and serum IgE levels were assayed. In a second group of experiments, sensitized and challenged mice were treated or not treated with fexofenadine before challenge. T cells were isolated from the lungs and adoptively transferred into naive recipients before exposure to limited airway allergen challenge, and lung function and inflammation were evaluated. Results: Fexofenadine treatment of sensitized mice prevented the development of airway hyperresponsiveness in both the primary sensitization and challenge, as well as in the adoptive transfer experiments. These changes were accompanied by decreases in bronchoalveolar lavage and tissue eosinophilia, lymphocyte numbers, and TH2 cytokine production. Conclusion: The results demonstrate the efficacy of an H1 receptor antagonist in preventing allergen-induced alterations in pulmonary inflammation and airway function. The data support the evaluation of drugs such as fexofenadine in the treatment of allergic asthma. (J Allergy Clin Immunol 2002;110:85-95.)
Le texte complet de cet article est disponible en PDF.Keywords : Fexofenadine, allergen, inflammation, airway hyperresponsiveness
Abbreviations : AHR, APC, BAL, EPO, MNC, OVA, PAS, Penh
Plan
Supported by National Institutes of Health grant HL-36577 and Aventis Pharmaceuticals. |
|
Reprint requests: Erwin W. Gelfand, MD, National Jewish Medical and Research Center, 1400 Jackson St, Denver, CO 80206. |
Vol 110 - N° 1
P. 85-95 - juillet 2002 Retour au numéroBienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.
Déjà abonné à cette revue ?