S'abonner

Identification of multi-modal random variables through mixtures of polynomial chaos expansions - 19/11/10

Doi : 10.1016/j.crme.2010.09.003 
Anthony Nouy
GeM - UMR CNRS 6183, École centrale Nantes, Université de Nantes, 1, rue de la Noë, 44321 Nantes, France 

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

pages 6
Iconographies 0
Vidéos 0
Autres 0

Abstract

A methodology is introduced for the identification of a multi-modal real-valued random variable from a collection of samples. The random variable is seen as a finite mixture of uni-modal random variables. A functional representation of the random variable is used, which can be interpreted as a mixture of polynomial chaos expansions. After a suitable separation of samples into sets of uni-modal samples, the coefficients of the expansion are identified by using an empirical projection technique. This identification procedure allows for a generic representation of a large class of multi-modal random variables with low-order generalized polynomial chaos representations.

Le texte complet de cet article est disponible en PDF.

Résumé

Une méthodologie est proposée pour l'identification d'une variable aléatoire multi-modale à partir d'échantillons. La variable aléatoire est vue comme un mélange fini de variables aléatoires uni-modales. Une représentation fonctionnelle de la variable aléatoire est utilisée. Elle peut être interprétée comme un mélange de décompositions sur le chaos polynômial. Après une séparation adaptée des échantillons en sous-ensembles d'échantillons uni-modaux, les coefficients de la décomposition sont identifiés en utilisant une technique de projection empirique. Cette procédure d'identification permet une représentation générique d'une large classe de variables aléatoires multi-modales avec une décomposition sur chaos polynômial généralisé de faible degré.

Le texte complet de cet article est disponible en PDF.

Keywords : Statistics, Uncertainty quantification, Identification, Multi-modal density, Polynomial chaos, Finite mixture model, Spectral stochastic methods

Mots-clés : Statistique, Quantification d'incertitudes, Identification, Densité multi-modale, Chaos Polynômial, Modèle de mélange fini, Méthodes spectrales stochastiques


Plan

Plan indisponible

© 2010  Académie des sciences. Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 338 - N° 12

P. 698-703 - décembre 2010 Retour au numéro
Article précédent Article précédent
  • Physical analysis of velocity and temperature cross-correlations in a plane mixing layer using variable temperature hot wire anemometry
  • Malick Ndoye, E. Dorignac, J. Delville, G. Arroyo
| Article suivant Article suivant
  • Extension of the non-uniform warping theory to an orthotropic composite beam
  • Nejib Ghazouani, Rached El Fatmi

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’achat d’article à l’unité est indisponible à l’heure actuelle.

Déjà abonné à cette revue ?

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2024 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.