S'abonner

Multivariate forecast of winter monsoon rainfall in India using SST anomaly as a predictor: Neurocomputing and statistical approaches - 01/10/10

Doi : 10.1016/j.crte.2010.06.004 
Goutami Chattopadhyay a , Surajit Chattopadhyay b, , Rajni Jain c
a Institute of Radiophysics and Electronics, 92, Acharya Prafulla Chandra Road, Kolkata 700009, India 
b Department of Computer Application, Pailan College of Management and Technology, Bengal Pailan Park, Kolkata 700104, India 
c National Centre for Agricultural Economics and Policy Research, Pusa, DPS Marg, New Delhi 110012, India 

Corresponding author.

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

pages 11
Iconographies 8
Vidéos 0
Autres 0

Abstract

In this article, the complexities in the relationship between rainfall and sea surface temperature (SST) anomalies during the winter monsoon over India were evaluated statistically using scatter plot matrices and autocorrelation functions. Linear, as well as polynomial trend equations were obtained, and it was observed that the coefficient of determination for the linear trend was very low and it remained low even when polynomial trend of degree six was used. An exponential regression equation and an artificial neural network with extensive variable selection were generated to forecast the average winter monsoon rainfall of a given year using the rainfall amounts and the SST anomalies in the winter monsoon months of the previous year as predictors. The regression coefficients for the multiple exponential regression equation were generated using Levenberg-Marquardt algorithm. The artificial neural network was generated in the form of a multilayer perceptron with sigmoid non-linearity and genetic-algorithm based variable selection. Both of the predictive models were judged statistically using the Willmott’s index, percentage error of prediction, and prediction yields. The statistical assessment revealed the potential of artificial neural network over exponential regression.

Le texte complet de cet article est disponible en PDF.

Résumé

Dans cet article, les complexités de relation entre anomalies de pluviosité et de température de surface océanique (SST) pendant la mousson d’hiver en Inde ont été évaluées en utilisant les matrices de dispersion et les fonctions d’auto-corrélation. Des équations à tendance linéaire, de même que des équations à tendance polynomiale ont été obtenues et il a été observé que le coefficient de détermination dans le cas de la tendance linéaire était très bas et restait bas, même quand la tendance polynomiale de degré 6 était utilisée. Une équation de régression exponentielle et un réseau neuronal artificiel avec sélection largement variable ont été générés, pour prédire la pluviosité moyenne de mousson d’hiver, lors d’une année donnée, en utilisant en tant que prédicteurs les anomalies de précipitations et de température de surface océanique pendant les mois de mousson d’hiver de l’année précédente. Les coefficients de régression pour l’équation de régression exponentielle multiple ont été générés en utilisant l’algorithme Levenberg-Marquardt. Le réseau neuronal artificiel a été généré sous la forme d’une perception multicouche à non-linéarité sigmoïde et algorithme basé sur une sélection variable. Les deux modèles prédictifs sont jugés statistiquement en utilisant l’index de Willmott, le pourcentage d’erreur de prédiction et le rendement de bonne prédiction. L’évaluation statistique révèle que le réseau neuronal artificiel a un potentiel supérieur à celui de la régression exponentielle.

Le texte complet de cet article est disponible en PDF.

Keywords : Winter monsoon, Sea surface temperature, Artificial neural network, Exponential regression, Forecast, Statistical assessment

Mots clés : Réseau neuronal artificiel, Température de surface océanique, Mousson d’hiver, Régression exponentielle, Évaluation statistique, Prévision


Plan


© 2010  Académie des sciences. Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 342 - N° 10

P. 755-765 - octobre 2010 Retour au numéro
Article précédent Article précédent
  • Editorial Board
| Article suivant Article suivant
  • Géomorphologie de Tromelin, océan Indien
  • Nick Marriner, Max Guérout, Thomas Romon, Philippe Dussouillez

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’achat d’article à l’unité est indisponible à l’heure actuelle.

Déjà abonné à cette revue ?

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2024 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.