S'abonner

Wilson spaces and homological algebra for coalgebraic modules - 04/05/10

Doi : 10.1016/j.crma.2010.03.002 
Takuji Kashiwabara
Institut Fourier, Université de Grenoble I, UMR5582 CNRS, BP 74, 38402 St Martin d’Hères, France 

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

pages 3
Iconographies 0
Vidéos 0
Autres 0

Abstract

In an earlier work, Wilson spaces were used to compute certain CTor Hopf algebras. In this Note we show how one can replace a resolution by infinite loop spaces associated to the Brown–Peterson spectrum with a resolution by Wilson spaces.

Le texte complet de cet article est disponible en PDF.

Résumé

Dans cet article, nous montrons que les espaces de Wilson peuvent être utilisés pour remplacer les espaces de lacets infinis associés au spectre de Brown–Peterson dans le calcul des CTor, les dérivées à gauche du produit tensoriel généralisé définies par Hunton et Turner.

Le texte complet de cet article est disponible en PDF.

Plan

Plan indisponible

© 2010  Académie des sciences. Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 348 - N° 9-10

P. 491-493 - mai 2010 Retour au numéro
Article précédent Article précédent
  • Differential ‘Galois’ extensions with new constants
  • Lourdes Juan, Andy R. Magid
| Article suivant Article suivant
  • Complete reducibility and separable field extensions
  • Michael Bate, Benjamin Martin, Gerhard Röhrle

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’achat d’article à l’unité est indisponible à l’heure actuelle.

Déjà abonné à cette revue ?

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2025 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.