Cell cycle progression - 01/01/04
pages | 8 |
Iconographies | 3 |
Vidéos | 0 |
Autres | 0 |
Résumé |
In this paper we consider cell cycle models for which the transition operator for the evolution of birth mass density is a simple, linear dynamical system with a stochastic perturbation. The convolution model for a birth mass distribution is presented. Density functions of birth mass and tail probabilities in -th generation are calculated by a saddle-point approximation method. With these probabilities, representing the probability of exceeding an acceptable mass value, we have more control over pathological growth. A computer simulation is presented for cell proliferation in the age-dependent cell cycle model. The simulation takes into account the fact that the age-dependent model with a linear growth is a simple linear dynamical system with an additive stochastic perturbation. The simulated data as well as the experimental data (generation times for mouse
) are fitted by the proposed convolution model. To cite this article: J. Tyrcha, C. R. Biologies 327 (2004).
Mots clés : cell cycle ; mass distribution ; convolution ; saddle-point approximation ; maximum likelihood.
Plan
Vol 327 - N° 3
P. 193-200 - mars 2004 Retour au numéroBienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.
Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’achat d’article à l’unité est indisponible à l’heure actuelle.
Déjà abonné à cette revue ?