Local smoothing effects for the water-wave problem with surface tension - 23/02/09
pages | 4 |
Iconographies | 0 |
Vidéos | 0 |
Autres | 0 |
Abstract |
The water-wave problem with a one-dimensional free surface of infinite depth is considered, based on the formulation as a second-order nonlinear dispersive equation. The local smoothing effects are established under the influence of surface tension, stating that on average in time solutions acquire locally 1/4 derivative of smoothness as compared to the initial state. The analysis combines energy methods with techniques of Fourier integral operators. To cite this article: H. Christianson et al., C. R. Acad. Sci. Paris, Ser. I 347 (2009).
Le texte complet de cet article est disponible en PDF.Résumé |
Nous considérons le problème des ondes avec une surface libre unidimensionnelle, de profondeur infinie, en utilisant sa formulation comme une équation non linéaire dispersive du second ordre. Nous mettons en évidence un effet de lissage local sous l’influence de la tension superficielle : en moyenne au fil du temps, les solutions acquièrent localement 1/4 de dérivée en plus de la régularité de l’état initial. L’analyse combine des méthodes d’énergie avec des techniques d’opérateurs Fourier intégraux. Pour citer cet article : H. Christianson et al., C. R. Acad. Sci. Paris, Ser. I 347 (2009).
Le texte complet de cet article est disponible en PDF.Plan
Vol 347 - N° 3-4
P. 159-162 - février 2009 Retour au numéroBienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.
Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’achat d’article à l’unité est indisponible à l’heure actuelle.
Déjà abonné à cette revue ?