Frailty indices based on routinely collected data: a scoping review - 11/04/25

Doi : 10.1016/j.tjfa.2025.100047 
Schenelle Dayna Dlima a, b, c, , Danielle Harris a, b, c , Abodunrin Quadri Aminu a, c , Alex Hall a, c , Chris Todd a, b, c, d, e , Emma RLC Vardy a, b, d, f
a School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK 
b National Institute for Health and Care Research, Applied Research Collaboration - Greater Manchester, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK 
c National Institute for Health and Care Research Policy Research Unit in Older People and Frailty / Healthy Ageing, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK 
d Manchester Academic Health Science Centre, Manchester, UK 
e Manchester University NHS Foundation Trust, Manchester, UK 
f Oldham Care Organisation, Northern Care Alliance NHS Foundation Trust, Rochdale Road, Oldham, UK 

Corresponding author: Schenelle Dayna Dlima

Bienvenue sur EM-consulte, la référence des professionnels de santé.
Article gratuit.

Connectez-vous pour en bénéficier!

Sous presse. Manuscrit accepté. Disponible en ligne depuis le Friday 11 April 2025

Highlights

Steady rise in research on routine data-based frailty indices (FIs) in the last decade.
Routine data-based FIs are valid tools to stratify risk in different populations and settings.
However, research is limited to specific geographies and routine adoption is slow.
Deficits in these FIs highlight an overtly clinical approach in frailty assessment.
Exploring data linkages to construct FIs is warranted to proactively monitor frailty.

Le texte complet de cet article est disponible en PDF.

Abstract

A frailty index (FI) is a frailty assessment tool calculated as the proportion of the number of health-related deficits an individual has to the total number of variables in the index. Routinely collected clinical and administrative data can be used as sources of deficits to automatically calculate FIs. This scoping review aimed to evaluate the current research landscape on routine data-based FIs. We searched seven databases to find literature published in 2013–2023. Main inclusion criteria were original research articles on FIs constructed from routine data, with deficits in at least two of the following categories: “symptoms/signs”, “laboratory values”, “diseases”, “disabilities”, and “others”. From 7,526 publications screened, 218 were included. Studies were primarily from North America (47.7%), conducted in the community (35.3%), and used routine data-based FIs for risk stratification (51.4%). FIs were calculated using various routine data sources; however, most were initially developed and validated using hospital records. We noted geographical differences in study settings and routine data sources. We identified 611 unique deficits comprising these FIs. Most were either “diseases” (34.4%) or “symptoms/signs” (32.1%). Routine data-based FIs are feasible and valid risk stratification tools, but research is confined to high-income countries, their routine adoption is slow, and deficits comprising these FIs emphasise a reactive and overtly medical approach in addressing frailty. Future directions include exploring the feasibility and applicability of using routine databases for frailty assessment in lower- and middle-income countries, and leveraging non-clinical routine data through data linkages to proactively identify and manage frailty.

Le texte complet de cet article est disponible en PDF.

Keywords : frailty, frailty index, deficit accumulation, routine data, routinely collected data, electronic health records, administrative data


Plan


© 2025  Publié par Elsevier Masson SAS.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Bienvenue sur EM-consulte, la référence des professionnels de santé.

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2025 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.