S'abonner

Deep learning-based multimodal CT/MRI image fusion and segmentation strategies for surgical planning of oral and maxillofacial tumors: A pilot study - 06/04/25

Doi : 10.1016/j.jormas.2025.102324 
Bin-Zhang Wu a, b, 1, Lei-Hao Hu a, c, 1, Si-Fan Cao d, Ji Tan d, Nian-Zha Danzeng e, Jing-Fan Fan d, , Wen-Bo Zhang a, , Xin Peng a
a Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, PR China 
b First Clinical Division, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, PR China 
c Department of General Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, PR China 
d Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing, PR China 
e Department of stomatology, People's Hospital of Tibet Autonomous Region, Tibet Autonomous Region, PR China 

Corresponding author at: Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, No.22, Zhongguancun South Avenue, Haidian District, Beijing, PR China.Department of Oral and Maxillofacial SurgeryPeking University School and Hospital of StomatologyNo.22, Zhongguancun South AvenueHaidian DistrictBeijingPR China⁎⁎Corresponding author at: Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, No.5, Zhongguancun South Avenue, Haidian District, Beijing, PR China.Beijing Engineering Research Center of Mixed Reality and Advanced DisplaySchool of Optics and PhotonicsBeijing Institute of TechnologyNo.5, Zhongguancun South Avenue, Haidian DistrictBeijingPR China
Sous presse. Épreuves corrigées par l'auteur. Disponible en ligne depuis le Sunday 06 April 2025

Abstract

Purpose

This pilot study aims to evaluate the feasibility and accuracy of deep learning-based multimodal computed tomography/magnetic resonance imaging (CT/MRI) fusion and segmentation strategies for the surgical planning of oral and maxillofacial tumors.

Materials and methods

This study enrolled 30 oral and maxillofacial tumor patients visiting our department between 2016 and 2022. All patients underwent enhanced CT and MRI scanning of the oral and maxillofacial region. Furthermore, three fusion models (Elastix, ANTs, and NiftyReg) and three segmentation models (nnU-Net, 3D UX-Net, and U-Net) were combined to generate nine hybrid deep learning models that were trained. The performance of each model was evaluated via the Fusion Index (FI), Dice similarity coefficient (Dice), 95th-percentile Hausdorff distance (HD95), mean surface distance (MSD), precision, and recall analysis.

Results

All three image fusion models (Elastix, ANTs, and NiftyReg) demonstrated satisfactory accuracy, with Elastix exhibiting the best performance. Among the tested segmentation models, the highest degree of accuracy for segmenting the maxilla and mandible was achieved by combining NiftyReg and nnU-Net. Furthermore, the highest overall accuracy of the nine hybrid models was observed with the Elastix and nnU-Net combination, which yielded a Dice coefficient of 0.89 for tumor segmentation.

Conclusion

In this study, deep learning models capable of automatic multimodal CT/MRI image fusion and segmentation of oral and maxillofacial tumors were successfully trained with a high degree of accuracy. The results demonstrated the feasibility of using deep learning-based image fusion and segmentation to establish a basis for virtual surgical planning.

Le texte complet de cet article est disponible en PDF.

Keywords : Deep learning, Multimodal image fusion, Image segmentation, Oral and maxillofacial tumors, Surgical planning


Plan


© 2025  Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Déjà abonné à cette revue ?

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2025 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.