S'abonner

Machine Learning Identifies Clinically Distinct Phenotypes in Patients With Aortic Regurgitation - 02/04/25

Doi : 10.1016/j.echo.2024.10.019 
Brototo Deb, MD, MIDS a, b, Christopher G. Scott, MS c, Hector I. Michelena, MD, PhD b, Sorin V. Pislaru, MD, PhD b, Vuyisile T. Nkomo, MD, MPH b, Garvan C. Kane, MD, PhD b, Juan A. Crestanello, MD d, Patricia A. Pellikka, MD b, Vidhu Anand, MD b, e,
a Department of Medicine, Georgetown University, Washington, District of Columbia 
b Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota 
c Department of Biostatistics, Mayo Clinic, Rochester, Minnesota 
d Department of Cardiothoracic Surgery, Mayo Clinic, Rochester, Minnesota 
e Department of Cardiovascular Medicine, Mayo Clinic Health System, Eau Claire, Wisconsin 

Reprint requests: Vidhu Anand, MBBS, Mayo Clinic College of Medicine and Science, Department of Cardiovascular Medicine, 200 First Street SW, Rochester, MN.Mayo Clinic College of Medicine and ScienceDepartment of Cardiovascular Medicine200 First Street SWRochesterMN

Abstract

Background

Aortic regurgitation (AR) is a prevalent valve disease with a long latent period before symptoms appear. Recent data has suggested the role of novel markers of myocardial overload in assessing onset of decompensation.

Methods

The aim of this study was to evaluate the role of unsupervised cluster analyses in identifying different clinical clusters, including clinical status, and a large number of echocardiographic variables including left ventricular volumes, and their associations with mortality. Patients with moderate to severe or greater chronic AR identified using echocardiography at the Mayo Clinic in Rochester, Minnesota, were retrospectively analyzed. The primary outcome was all-cause mortality censored at aortic valve surgery. Uniform manifold approximation and projection with the k-means algorithm was used to cluster patients using clinical and echocardiographic variables at the time of presentation. Missing data were imputed using the multiple imputation by chained equations method. A supervised approach trained on the training set was used to find cluster membership in a hold-out validation set. Log-rank tests were used to assess differences in mortality rates among the clusters in both the training and validation sets.

Results

Three distinct clusters were identified among 1,100 patients (log-rank P for survival < .001). Cluster 1 (n = 337), which included younger males with severe AR but fewer symptoms, showed the best survival at 75.6% (95% CI, 69.5%-82.3%). Cluster 2 (n = 235), including older patients and more females with elevated filling pressures, showed intermediate survival of 64.2% (95% CI, 56.8%-72.5%). Cluster 3 (n = 253), characterized by severe symptomatic AR, demonstrated the lowest survival of 45.3% (95% CI, 34.4%-59.8%) at 5 years. Similar clusters were identified in the internal validation cohort.

Conclusions

Distinct clusters with variable echocardiographic features and mortality differences exist within patients with chronic moderate to severe or greater AR. Recognizing these clusters can refine individual risk stratification and clinical decision-making after verification in future prospective studies.

Le texte complet de cet article est disponible en PDF.

Central Illustration

One thousand one hundred patients were divided into development (n = 825) and validation (n = 275) cohorts. In the development cohort, symptoms, echocardiographic features, and blood pressure were used to phenotype patients into three clusters with unique characteristics and differential all-cause mortality. Cluster 1 included mostly severe but relatively asymptomatic men. Cluster 2 was characterized by older women with the least severe AR and higher filling pressures, and cluster 3 included primarily men with the highest severity (largest EROAs and regurgitant volumes), the highest proportion with reduced EFs, larger LV size, and symptomatic AR.



Central Illustration : 

One thousand one hundred patients were divided into development (n = 825) and validation (n = 275) cohorts. In the development cohort, symptoms, echocardiographic features, and blood pressure were used to phenotype patients into three clusters with unique characteristics and differential all-cause mortality. Cluster 1 included mostly severe but relatively asymptomatic men. Cluster 2 was characterized by older women with the least severe AR and higher filling pressures, and cluster 3 included primarily men with the highest severity (largest EROAs and regurgitant volumes), the highest proportion with reduced EFs, larger LV size, and symptomatic AR. [To note - the cluster and survival analysis data is for representation only. Refer to Figure 1 for study-specific data. Figure created with BioRender].


Central IllustrationOne thousand one hundred patients were divided into development (n = 825) and validation (n = 275) cohorts. In the development cohort, symptoms, echocardiographic features, and blood pressure were used to phenotype patients into three clusters with unique characteristics and differential all-cause mortality. Cluster 1 included mostly severe but relatively asymptomatic men. Cluster 2 was characterized by older women with the least severe AR and higher filling pressures, and cluster 3 included primarily men with the highest severity (largest EROAs and regurgitant volumes), the highest proportion with reduced EFs, larger LV size, and symptomatic AR. [To note - the cluster and survival analysis data is for representation only. Refer to Figure 1 for study-specific data. Figure created with BioRender].

Le texte complet de cet article est disponible en PDF.

Highlights

In severe AR, ML identified clusters using clinical and echocardiographic features.
Three clusters differed in demographics, LV remodeling, AR severity, and symptoms.
Mortality increased from cluster 1 to cluster 3.

Le texte complet de cet article est disponible en PDF.

Keywords : Aortic regurgitation, Machine learning, Cluster analyses, Echocardiography

Abbreviations : AR, EF, EROA, LV, ML, NYHA, RVSP, UMAP


Plan


 This work was funded by an intramural grant from the Department of Cardiovascular Ultrasound, Mayo Clinic.
 Raymond Stainback, MD, served as guest editor for this report.


© 2024  American Society of Echocardiography. Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 38 - N° 4

P. 300-309 - avril 2025 Retour au numéro
Article précédent Article précédent
  • Thank You, JASE Reviewer Team!
  • Patricia A. Pellikka
| Article suivant Article suivant
  • Reevaluating Normal-Flow Low-Gradient Severe Aortic Stenosis: Clinical Phenotypes and Outcomes in Severe Aortic Stenosis Among Transcatheter Aortic Valve Replacement Patients
  • Amro Badr, Mustafa Suppah, Kamal Awad, Juan Farina, Bobbi Jo Heon, Rachel Wraith, Bishoy Abraham, Sara Kaldas, Vuyisile Nkomo, Reza Arsanjani, Chieh-Ju Chao, David Holmes, Said Alsidawi

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Déjà abonné à cette revue ?

Elsevier s'engage à rendre ses eBooks accessibles et à se conformer aux lois applicables. Compte tenu de notre vaste bibliothèque de titres, il existe des cas où rendre un livre électronique entièrement accessible présente des défis uniques et l'inclusion de fonctionnalités complètes pourrait transformer sa nature au point de ne plus servir son objectif principal ou d'entraîner un fardeau disproportionné pour l'éditeur. Par conséquent, l'accessibilité de cet eBook peut être limitée. Voir plus

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2026 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.