S'abonner

Clinically Guided Adaptive Machine Learning Update Strategies for Predicting Severe COVID-19 Outcomes - 10/02/25

Doi : 10.1016/j.amjmed.2024.10.011 
Mehmet Ulvi Saygi Ayvaci, PhD a, Varghese S. Jacobi, PhD a, Young Ryu, PhD a, Saikrishna Pannaga Srikar Gundreddy b, Bekir Tanriover, MD, MPH, MBA, FAST c,
a Information Systems, Naveen Jindal School of Management, The University of Texas at Dallas, Dallas 
b Computer Science, Eric Johnson School of Engineering, The University of Texas at Dallas, Richardson 
c Division of Nephrology, College of Medicine, The University of Arizona, Tucson 

Requests for reprints should be addressed to Bekir Tanriover, MD, MPH, MBA, FAST, Division of Nephrology, College of Medicine, The University of Arizona, 1501 N Campbell Avenue PO Box 245022, Tucson, AZ 85724.Division of NephrologyCollege of MedicineThe University of Arizona1501 N Campbell Avenue PO Box 245022TucsonAZ85724

Bienvenue sur EM-consulte, la référence des professionnels de santé.
Article gratuit.

Connectez-vous pour en bénéficier!

Abstract

Background

Machine learning algorithms are essential for predicting severe outcomes during public health crises like COVID-19. However, the dynamic nature of diseases requires continual evaluation and updating of these algorithms. This study aims to compare three update strategies for predicting severe COVID-19 outcomes postdiagnosis: “naive” (a single initial model), “frequent” (periodic retraining), and “context-driven” (retraining informed by clinical insights). The goal is to determine the most effective timing and approach for adapting algorithms to evolving disease dynamics and emerging data.

Methods

A dataset of 1.11 million COVID-19 patients from diverse U.S. regions was used to develop and validate an XGBoost algorithm for predicting severe outcomes upon diagnosis. Data included patient demographics, vital signs, comorbidities, and immunity-related factors (prior infection and vaccination status) from January 2007 to November 2021. The study analyzed the performance of the three update strategies from March 2020 to November 2021.

Results

Predictive features changed over the pandemic, with comorbidities and vitals being significant initially, and geography, demographics, and immunity-related variables gaining importance later. The “naive” strategy had an average area under the curve (AUC) of 0.77, the “frequent” strategy maintained stability with an average AUC of 0.81, and the “context-driven” strategy averaged an AUC of 0.80, outperforming the “naive” strategy and aligning closely with the “frequent” strategy.

Conclusions

A context-driven approach, guided by clinical insights, can enhance predictive performance and offer cost-effective solutions for dynamic public health challenges. These findings have significant implications for efficiently managing healthcare resources during evolving disease outbreaks.

Le texte complet de cet article est disponible en PDF.

Keywords : COVID-19, Disease evolution, Machine learning


Plan


 Statement: During the preparation of this work the author(s) used Grammarly in order to optimize the manuscript grammatically and to enhance readability. After using this tool/service, the author(s) reviewed and edited the content as needed and take(s) full responsibility for the content of the publication.
 Funding: None.
 Conflict of Interest: The authors declare no conflict of interest related to the topic.
 Authorship: MUSA: Writing—original draft, validation, supervision, resources, methodology, formal analysis, data curation, conceptualization; VSJ: Writing—original draft, resources, project administration; YR: Writing—original draft; SPSG: Writing—original draft, visualization, validation, formal analysis, data curation; BT: Writing—original draft, supervision, methodology, conceptualization. All authors have participated in the preparation of the manuscript. All authors read and approved the manuscript, contributed significantly to the work.


© 2024  Elsevier Inc. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 138 - N° 2

P. 228 - février 2025 Retour au numéro
Article précédent Article précédent
  • Demographical and Regional Trends of HIV-Related Mortality Among Young Adults in the United States From 1999 to 2020
  • Kaneez Fatima, Amna Siddiqui, Ghulam Mustafa Ali Malik, Areeba Farooqui, Zuha Rasul, Faba Hanif, Bisma Mansoor, Fatima Mansoor, Mohammad Bilal Abbasi, Khizar Rehan, Rahima Azam, Aaliyan Wajid, Atida Awan, Ishaque Hameed
| Article suivant Article suivant
  • Febuxostat Leads to Better Cardiovascular Outcomes Compared to Allopurinol in Patients With Advanced Chronic Kidney Disease: A Population-Based Cohort Study
  • Ming-Hsien Tsai, Yun-Yi Chen, Hung-Hsiang Liou, Jing-Tong Wang, Yu-Wei Fang

Bienvenue sur EM-consulte, la référence des professionnels de santé.

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2025 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.