S'abonner

Risk prediction of kalaemia disturbance and acute kidney injury after total knee arthroplasty: use of a machine learning algorithm - 25/01/25

Doi : 10.1016/j.otsr.2024.103958 
Pierre Tran a, Siam Knecht b, Lyna Tamine a, Nicolas Faure a, Jean-Christophe Orban c, Nicolas Bronsard a, Jean-François Gonzalez a, Grégoire Micicoi a,
a Institut Universitaire Locomoteur et du Sport (IULS), Hôpital Pasteur 2, CHU de Nice, 30 voie Romaine, 06000 Nice, France 
b Aix-Marseille Université, CNRS, EFS, ADES, 13007 Marseille, France 
c Département d’Anesthésie Réanimation et Médecine Péri-Opératoire, Hôpital Privé Cannes Oxford, 06400 Cannes, France 

Corresponding author.

Abstract

Introduction

Total knee arthroplasty (TKA) is a procedure associated with risks of electrolyte and kidney function disorders, which are rare but can lead to serious complications if not correctly identified. A routine check-up is very often carried out to assess the seric ionogram and kidney function after TKA, that rarely requires clinical intervention in the event of a disturbance. The aim of this study was to identify perioperative variables that would lead to the creation of a machine learning model predicting the risk of kalaemia disorders and/or acute kidney injury after total knee arthroplasty.

Hypothesis

A predictive model could be constructed to estimate the risk of kalaemia disorders and/or acute kidney injury after total knee arthroplasty.

Material and methods

This single-centre retrospective study included 774 total knee arthroplasties (TKA) operated on between January 2020 and March 2023. Twenty-five preoperative variables were incorporated into the machine learning model and filtered by a first algorithm. The most predictive variables selected were used to construct a second algorithm to define the overall risk model for postoperative kalaemia and/or acute kidney injury (K+ A). Two groups were formed of K+ A and non-K+ A patients after TKA. A univariate analysis was performed and the performance of the machine learning model was assessed by the area under the curve representing the sensitivity of the model as a function of 1 - specificity.

Results

Of the 774 patients included who had undergone TKA surgery, 46 patients (5.9%) had a postoperative kalaemia disorder requiring correction and 13 patients (1.7%) had acute kidney injury, of whom 5 patients (0.6%) received vascular filling. Eight variables were included in the machine learning predictive model, including body mass index, age, presence of diabetes, operative time, lowest mean arterial pressure, Charlson score, smoking and preoperative glomerular filtration rate.

Overall performance was good with an area under the curve of 0.979 [CI95% 0.938–1.02], sensitivity was 90.3% [CI95% 86.2–94.4] and specificity 89.7% [CI95% 85.5–93.8]. The tool developed to assess the risk of impaired kalaemia and/or acute kidney injury after TKA is available on arthrorisk.com.

Conclusion

The risk of kalaemia disturbance and postoperative acute kidney injury after total knee arthroplasty could be predicted by a model that identifies low-risk and high-risk patients based on eight pre- and intraoperative variables. This machine learning tool is available on a web platform accessible for everyone, easy to use and has a high predictive performance. The aim of the model was to better identify and anticipate the complications of dyskalaemia and postoperative acute kidney injury in high-risk patients. Further prospective multicentre series are needed to assess the value of a systematic postoperative biochemical work-up in the absence of risk predicted by the model.

Level of evidence

IV; retrospective study of case series.

Le texte complet de cet article est disponible en PDF.

Keywords : Arthroplasty, Acute kidney injury, Knee, Machine learning, Potassium, Predictive model


Plan


© 2024  Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 111 - N° 1

Article 103958- février 2025 Retour au numéro
Article précédent Article précédent
  • Prediction of transfusion risk after total knee arthroplasty: use of a machine learning algorithm
  • Nicolas Faure, Siam Knecht, Pierre Tran, Lyna Tamine, Jean-Christophe Orban, Nicolas Bronsard, Jean-François Gonzalez, Grégoire Micicoi
| Article suivant Article suivant
  • Rate of complications and short-term Functional Results of Revision Total Knee Arthroplasty for Tibio-femoral Instability: do stability and range of motion are restored in 62 revisions
  • Antoine Labouyrie, Julien Dаrtus, Sophie Putman, Teddy Trouillez, Henri Migаud, Gilles Pаsquier

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Déjà abonné à cette revue ?

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2025 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.