Identifying proteomic prognostic markers for Alzheimer's disease with survival machine learning: The Framingham Heart Study - 02/01/25

Doi : 10.1016/j.tjpad.2024.100021 
Yuanming Leng a, #, Huitong Ding b, c, #, Ting Fang Alvin Ang b, c, d, Rhoda Au b, c, d, e, f, P. Murali Doraiswamy g, Chunyu Liu a,
a Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA 
b Department of Anatomy and Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA 
c Framingham Heart Study, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA 
d Slone Epidemiology Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA 
e Departments of Neurology and Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA 
f Department of Epidemiology, Boston University School of Public Health, Boston, MA 02118, USA 
g Department of Psychiatry, Neurocognitive Disorders Program, Duke University School of Medicine, Durham, NC 27710, USA 

Corresponding author at: Department of Biostatistics, Boston University School of Public Health, Crosstown Building 801, Massachusetts Avenue Boston, MA, 02118, USADepartment of BiostatisticsBoston University School of Public HealthCrosstown Building 801, Massachusetts Avenue BostonMA02118USA

Bienvenue sur EM-consulte, la référence des professionnels de santé.
Article gratuit.

Connectez-vous pour en bénéficier!

Sous presse. Épreuves corrigées par l'auteur. Disponible en ligne depuis le Thursday 02 January 2025

Abstract

Background

Protein abundance levels, sensitive to both physiological changes and external interventions, are useful for assessing the Alzheimer's disease (AD) risk and treatment efficacy. However, identifying proteomic prognostic markers for AD is challenging by their high dimensionality and inherent correlations.

Methods

Our study analyzed 1128 plasma proteins, measured by the SOMAscan platform, from 858 participants 55 years and older (mean age 63 years, 52.9 % women) of the Framingham Heart Study (FHS) Offspring cohort. We conducted regression analysis and machine learning models, including LASSO-based Cox proportional hazard regression model (LASSO) and generalized boosted regression model (GBM), to identify protein prognostic markers. These markers were used to construct a weighted proteomic composite score, the AD prediction performance of which was assessed using time-dependent area under the curve (AUC). The association between the composite score and memory domain was examined in 339 (of the 858) participants with available memory scores, and in a separate group of 430 participants younger than 55 years (mean age 46, 56.7 % women).

Results

Over a mean follow-up of 20 years, 132 (15.4 %) participants developed AD. After adjusting for baseline age, sex, education, and APOE ε4 + status, regression models identified 309 proteins (P ≤ 0.2). After applying machine learning methods, nine of these proteins were selected to develop a composite score. This score improved AD prediction beyond the factors of age, sex, education, and APOE ε4 + status across 15–25 years of follow-up, achieving its peak AUC of 0.84 in the LASSO model at the 22-year follow-up. It also showed a consistent negative association with memory scores in the 339 participants (beta = −0.061, P = 0.046), 430 participants (beta = −0.060, P = 0.018), and the pooled 769 samples (beta = −0.058, P = 0.003).

Conclusion

These findings highlight the utility of machine learning method in identifying proteomic markers in improving AD prediction and emphasize the complex pathology of AD. The composite score may aid early AD detection and efficacy monitoring, warranting further validation in diverse populations.

Le texte complet de cet article est disponible en PDF.

Keywords : Alzheimer's disease, Proteomics, Prognostic markers, Risk, Survival machine learning


Plan


© 2024  Publié par Elsevier Masson SAS.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Bienvenue sur EM-consulte, la référence des professionnels de santé.

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2025 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.