S'abonner

Intrapartum electronic fetal heart rate monitoring to predict acidemia at birth with the use of deep learning - 24/12/24

Doi : 10.1016/j.ajog.2024.04.022 
Jennifer A. McCoy, MD, MSCE a, , Lisa D. Levine, MD, MSCE a, Guangya Wan, MS b, Corey Chivers, PhD c, Joseph Teel, MD d, William G. La Cava, PhD e
a Maternal Fetal Medicine Research Program, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 
b School of Data Science, University of Virginia, Charlottesville, VA 
c Proscia Inc, Philadelphia, PA 
d Department of Family Medicine and Community Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 
e Computational Health Informatics Program, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 

Corresponding author: Jennifer A. McCoy, MD, MSCE.

Abstract

Background

Electronic fetal monitoring is used in most US hospital births but has significant limitations in achieving its intended goal of preventing intrapartum hypoxic-ischemic injury. Novel deep learning techniques can improve complex data processing and pattern recognition in medicine.

Objective

This study aimed to apply deep learning approaches to develop and validate a model to predict fetal acidemia from electronic fetal monitoring data.

Study Design

The database was created using intrapartum electronic fetal monitoring data from 2006 to 2020 from a large, multisite academic health system. Data were divided into training and testing sets with equal distribution of acidemic cases. Several different deep learning architectures were explored. The primary outcome was umbilical artery acidemia, which was investigated at 4 clinically meaningful thresholds: 7.20, 7.15, 7.10, and 7.05, along with base excess. The receiver operating characteristic curves were generated with the area under the receiver operating characteristic assessed to determine the performance of the models. External validation was performed using a publicly available Czech database of electronic fetal monitoring data.

Results

A total of 124,777 electronic fetal monitoring files were available, of which 77,132 had <30% missingness in the last 60 minutes of the electronic fetal monitoring tracing. Of these, 21,041 were matched to a corresponding umbilical cord gas result, of which 10,182 were time-stamped within 30 minutes of the last electronic fetal monitoring reading and composed the final dataset. The prevalence rates of the outcomes in the data were 20.9% with a pH of <7.2, 9.1% with a pH of <7.15, 3.3% with a pH of <7.10, and 1.3% with a pH of <7.05. The best performing model achieved an area under the receiver operating characteristic of 0.85 at a pH threshold of <7.05. When predicting the joint outcome of both pH of <7.05 and base excess of less than −10 meq/L, an area under the receiver operating characteristic of 0.89 was achieved. When predicting both pH of <7.20 and base excess of less than −10 meq/L, an area under the receiver operating characteristic of 0.87 was achieved. At a pH of <7.15 and a positive predictive value of 30%, the model achieved a sensitivity of 90% and a specificity of 48%.

Conclusion

The application of deep learning methods to intrapartum electronic fetal monitoring analysis achieves promising performance in predicting fetal acidemia. This technology could help improve the accuracy and consistency of electronic fetal monitoring interpretation.

Le texte complet de cet article est disponible en PDF.

Video


(8.29 Mo)

Le texte complet de cet article est disponible en PDF.

Key words : artificial intelligence, deep learning, electronic fetal monitoring, fetal acidemia, intrapartum, labor, machine learning, obstetrics


Plan


 The authors report no conflict of interest.
 This study received funding from the Women’s Reproductive Health Research (grant numbers: 5 K12 HD 1265-22 and T32-HD007440).
 The funding source had no role in the study design; collection, analysis, and interpretation of data; writing of the report; or decision to submit the article for publication.
 This study was presented at the 44th annual pregnancy meeting of the Society for Maternal-Fetal Medicine, National Harbor, MD, February 10–14, 2024.
 Cite this article as: McCoy JA, Levine LD, Wan G, et al. Intrapartum electronic fetal heart rate monitoring to predict acidemia at birth with the use of deep learning. Am J Obstet Gynecol 2025;232:116.e1-9.


© 2024  Elsevier Inc. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 232 - N° 1

P. 116.e1-116.e9 - janvier 2025 Retour au numéro
Article précédent Article précédent
  • Evidence of brain injury in fetuses of mothers with preterm labor with intact membranes and preterm premature rupture of membranes
  • Clara Murillo, Elisenda Eixarch, Claudia Rueda, Marta Larroya, David Boada, Laia Grau, Júlia Ponce, Victoria Aldecoa, Elena Monterde, Silvia Ferrero, Vicente Andreu-Fernández, Gemma Arca, Laura Oleaga, Olga Ros, Maria Pilar Hernández, Eduard Gratacós, Montse Palacio, Teresa Cobo
| Article suivant Article suivant
  • Maternal rest improves growth in small-for-gestational-age fetuses (<10th percentile)
  • Greggory R. DeVore, Bardo Polanco, Wesley Lee, Jeffrey Brian Fowlkes, Emma E. Peek, Manesha Putra, John C. Hobbins

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Déjà abonné à cette revue ?

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2025 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.