S'abonner

Deep learning–assisted two-dimensional transperineal ultrasound for analyzing bladder neck motion in women with stress urinary incontinence - 24/12/24

Doi : 10.1016/j.ajog.2024.07.021 
Jin Wang, MD a, Xin Yang, PhD b, c, Yinnan Wu, MD, PhD a, d, Yanqing Peng, MD a, Yan Zou, MD a, Xiduo Lu, MS e, Shuangxi Chen, MD a, Xiaoyi Pan, MS e, Dong Ni, PhD b, c, , Litao Sun, MD, PhD a,
a Department of Ultrasound Medicine, Cancer Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China 
b Medical UltraSound Image Computing (MUSIC) Lab, Shenzhen University, Shenzhen, China 
c National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University, Shenzhen, China 
d School of Mathematical Sciences, Zhejiang University, Hangzhou, Zhejiang, China 
e Shenzhen RayShape Medical Technology Co, Ltd, Shenzhen, China 

Corresponding author: Litao Sun, MD, PhD.∗∗Dong Ni, PhD.

Abstract

Background

No universally recognized transperineal ultrasound parameters are available for evaluating stress urinary incontinence. The information captured by commonly used perineal ultrasound parameters is limited and insufficient for a comprehensive assessment of stress urinary incontinence. Although bladder neck motion plays a major role in stress urinary incontinence, objective and visual methods to evaluate its impact on stress urinary incontinence remain lacking.

Objective

To use a deep learning–based system to evaluate bladder neck motion using 2-dimensional transperineal ultrasound videos, exploring motion parameters for diagnosing and evaluating stress urinary incontinence. We hypothesized that bladder neck motion parameters are associated with stress urinary incontinence and are useful for stress urinary incontinence diagnosis and evaluation.

Study Design

This retrospective study including 217 women involved the following parameters: maximum and average speeds of bladder neck descent, β angle, urethral rotation angle, and duration of the Valsalva maneuver. The fitted curves were derived to visualize bladder neck motion trajectories. Comparative analyses were conducted to assess these parameters between stress urinary incontinence and control groups. Logistic regression and receiver operating characteristic curve analyses were employed to evaluate the diagnostic performance of each motion parameter and their combinations for stress urinary incontinence.

Results

Overall, 173 women were enrolled in this study (82, stress urinary incontinence group; 91, control group). No significant differences were observed in the maximum and average speeds of bladder neck descent and in the speed variance of bladder neck descent. The maximum and average speed of the β and urethral rotation angles were faster in the stress urinary incontinence group than in the control group (151.2 vs 109.0 mm/s, P=.001; 6.0 vs 3.1 mm/s, P<.001; 105.5 vs 69.6 mm/s, P<.001; 10.1 vs 7.9 mm/s, P=.011, respectively). The speed variance of the β and urethral rotation angles were higher in the stress urinary incontinence group (844.8 vs 336.4, P<.001; 347.6 vs 131.1, P<.001, respectively). The combination of the average speed of the β angle, maximum speed of the urethral rotation angle, and duration of the Valsalva maneuver demonstrated a strong diagnostic performance (area under the curve, 0.87). When 0.481∗β anglea+0.013∗URAm+0.483∗Dval=7.405, the diagnostic sensitivity was 70% and specificity was 92%, highlighting the significant role of bladder neck motion in stress urinary incontinence, particularly changes in the speed of the β and urethral rotation angles.

Conclusions

A system utilizing deep learning can describe the motion of the bladder neck in women with stress urinary incontinence during the Valsalva maneuver, making it possible to visualize and quantify bladder neck motion on transperineal ultrasound. The speeds of the β and urethral rotation angles and duration of the Valsalva maneuver were relatively reliable diagnostic parameters.

Le texte complet de cet article est disponible en PDF.

Video


(9.83 Mo)

Le texte complet de cet article est disponible en PDF.

Key words : bladder neck motion, deep learning, stress urinary incontinence, transperineal ultrasound


Plan


 J. W. and X. Y. contributed equally to this study.
 The authors report no conflict of interest.
 The authors received no specific funding for this study and declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
 Cite this article as: Wang J, Yang X, Wu Y, et al. Deep learning–assisted two-dimensional transperineal ultrasound for analyzing bladder neck motion in women with stress urinary incontinence. Am J Obstet Gynecol 2025;232:112.e1-12.


© 2024  Publié par Elsevier Masson SAS.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 232 - N° 1

P. 112.e1-112.e12 - janvier 2025 Retour au numéro
Article précédent Article précédent
  • Clinical and molecular risk factors for repeat interventions due to symptomatic uterine leiomyomas
  • Sara Khamaiseh, Anna Äyräväinen, Maare Arffman, Siiri Reinikka, Miika Mehine, Päivi Härkki, Ralf Bützow, Annukka Pasanen, Pia Vahteristo
| Article suivant Article suivant
  • Evidence of brain injury in fetuses of mothers with preterm labor with intact membranes and preterm premature rupture of membranes
  • Clara Murillo, Elisenda Eixarch, Claudia Rueda, Marta Larroya, David Boada, Laia Grau, Júlia Ponce, Victoria Aldecoa, Elena Monterde, Silvia Ferrero, Vicente Andreu-Fernández, Gemma Arca, Laura Oleaga, Olga Ros, Maria Pilar Hernández, Eduard Gratacós, Montse Palacio, Teresa Cobo

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Déjà abonné à cette revue ?

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2025 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.