S'abonner

A clinical ultrasound algorithm to identify uterine sarcoma and smooth muscle tumors of uncertain malignant potential in patients with myometrial lesions: the MYometrial Lesion UltrasouNd And mRi study - 24/12/24

Doi : 10.1016/j.ajog.2024.07.027 
Francesca Ciccarone, MD a, , Antonella Biscione, MD b, Eleonora Robba, MD a, Tina Pasciuto, EngD, PhD c, d, Diana Giannarelli, MS, PhD e, Benedetta Gui, MD f, g, Riccardo Manfredi, MD, PhD f, g, h, Gabriella Ferrandina, MD, PhD a, i, Daniela Romualdi, MD a, Francesca Moro, MD, PhD a, Gian Franco Zannoni, MD, PhD a, j, Domenica Lorusso, MD, PhD a, i, Giovanni Scambia, MD, PhD a, i, Antonia Carla Testa, MD, PhD a, i
a Gynecologic Oncology Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Roma, Italy 
b Ovarian Cancer Center, Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy 
c Data Collection G-STeP Research Core Facility, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Roma, Italy 
d Section of Hygiene, University Department of Life Sciences and Public Health, Università Cattolica Del Sacro Cuore, Rome, Italy 
e Epidemiology and Biostatistics Facility, G-STeP Generator, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy 
f Department of Diagnostic Imaging, Radiation Oncology and Hematology, Fondazione Policlinico “A. Gemelli” IRCCS, Rome, Italy 
g Catholic University of the Sacred Hearth, Rome, Italy 
h University Department of Radiological and Hematological Sciences, Università Cattolica del Sacro Cuore, Roma, Italy 
i Section of Obstetrics and Gynecology, University Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Roma, Italy 
j Section of Pathology, Department of Woman and Child Health and Public Health, Università Cattolica del Sacro Cuore, Roma, Italy 

Corresponding author: Francesca Ciccarone.

Abstract

Background

Differential diagnosis between benign uterine smooth muscle tumors and malignant counterpart is challenging.

OBJECTIVE

To evaluate the accuracy of a clinical and ultrasound based algorithm in predicting mesenchymal uterine malignancies, including smooth muscle tumors of uncertain malignant potential.

STUDY DESIGN

We report the 12-month follow-up of an observational, prospective, single-center study that included women with at least 1 myometrial lesion ≥3 cm on ultrasound examination. These patients were classified according to a 3-class diagnostic algorithm, using symptoms and ultrasound features. “White” patients underwent annual telephone follow-up for 2 years, “Green” patients underwent a clinical and ultrasound follow-up at 6, 12, and 24 months and “Orange” patients underwent surgery. We further developed a risk class system to stratify the malignancy risk.

RESULTS

Two thousand two hundred sixty-eight women were included and target lesion was classified as benign in 2158 (95.1%), as other malignancies in 58 (2.6%) an as mesenchymal uterine malignancies in 52 (2.3%) patients. At multivariable analysis, age (odds ratio 1.05 [95% confidence interval 1.03–1.07]), tumor diameter >8 cm (odds ratio 5.92 [95% confidence interval 2.87–12.24]), irregular margins (odds ratio 2.34 [95% confidence interval 1.09–4.98]), color score=4 (odds ratio 2.73 [95% confidence interval 1.28–5.82]), were identified as independent risk factors for malignancies, whereas acoustic shadow resulted in an independent protective factor (odds ratio 0.39 [95% confidence interval 0.19–0.82[). The model, which included age as a continuous variable and lesion diameter as a dichotomized variable (cut-off 81 mm), provided the best area under the curve (0.87 [95% confidence interval 0.82–0.91]). A risk class system was developed, and patients were classified as low-risk (predictive model value <0.39%: 0/606 malignancies, risk 0%), intermediate risk (predictive model value 0.40%–2.2%: 9/1093 malignancies, risk 0.8%), high risk (predictive model value ≥2.3%: 43/566 malignancies, risk 7.6%).

Conclusion

The preoperative 3-class diagnostic algorithm and risk class system can stratify women according to risk of malignancy. Our findings, if confirmed in a multicenter study, will permit differentiation between benign and mesenchymal uterine malignancies allowing a personalized clinical approach.

Le texte complet de cet article est disponible en PDF.

Video


(26.04 Mo)

Le texte complet de cet article est disponible en PDF.

Key words : gynecological malignancies, myomas, myometrial lesions, STUMP, ultrasound, uterine sarcomas, uterine tumors


Plan


 The authors report no conflict of interest.
 Cite this article as: Ciccarone F, Biscione A, Robba E, et al. A clinical ultrasound algorithm to identify uterine sarcoma and smooth muscle tumors of uncertain malignant potential in patients with myometrial lesions: the MYometrial Lesion UltrasouNd And mRi study. Am J Obstet Gynecol 2025;232:108.e1-22.


© 2024  Elsevier Inc. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 232 - N° 1

P. 108.e1-108.e22 - janvier 2025 Retour au numéro
Article précédent Article précédent
  • The impact of metronidazole on pain persistence after fertility-sparing endometriosis surgery: METROFERT randomized study
  • Amira Quevedo, Shivani Parikh, Jonathan Reinstine, Petra Chamseddine, Jeremy T. Gaskins, Cathy Whalen, Shan Biscette, Resad Paya Pasic
| Article suivant Article suivant
  • Clinical and molecular risk factors for repeat interventions due to symptomatic uterine leiomyomas
  • Sara Khamaiseh, Anna Äyräväinen, Maare Arffman, Siiri Reinikka, Miika Mehine, Päivi Härkki, Ralf Bützow, Annukka Pasanen, Pia Vahteristo

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Déjà abonné à cette revue ?

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2025 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.