Frailty Is a Risk Factor for Falls in the Older Adults: A Systematic Review and Meta-Analysis - 10/12/24

Doi : 10.1007/s12603-023-1935-8 
Z.-C. Yang 1, 2, 3, H. Lin 1, 2, G.-H. Jiang 4, Y.-H. Chu 1, 2, J.-H. Gao 1, 2, Z.-J. Tong 4, Zhi-hao Wang 1, 2
1 Department of Geriatric Medicine, Qilu Hospital, Shandong University, No.107, Wenhua West Road, 250012, Jinan, Shandong, China 
2 Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Shandong University, No.107, Wenhua West Road, 250012, Jinan, Shandong, China 
3 School of Nursing and Rehabilitation, Shandong University, Jinan, Shandong, China 
4 Department of Cardiology, Qilu Hospital, Shandong University, Jinan, Shandong, China 

Bienvenue sur EM-consulte, la référence des professionnels de santé.
Article gratuit.

Connectez-vous pour en bénéficier!

Abstract

Objectives

There is little evidence in the literature about the relationship between frailty and falls in older adults. Our objective was to explore the relationship between frailty and falls, and to analyze the effect factors (e.g., gender, different frailty assessment tools, areas, level of national economic development, and year of publication) of the association between frailty and falls among older adults.

Design

Systematic review and meta-analysis.

Setting and Participants

Cohort studies that evaluated the association between frailty and falls in the older adults were included. We excluded any literature outside of cohort studies.

Methods

We did a systematic literature search of English databases PubMed, Scopus, Web of Science, EBSCOhost, and SciElO, as well as the Chinese databases CNKI, WANFANG, and VIP from 2001 until October 2022. The eligible studies were evaluated for potential bias using the Newcastle-Ottawa Scale (NOS). Study selection, data extraction and assessment of study quality were each conducted by two investigators. In Stata/MP 17.0 software, we calculated pooled estimates of the prevalence of falls by using a random-effects model, Subgroup analysis was conducted based on gender, different frailty assessment tools, areas, level of economic development, and year of publication. The results are presented using a forest plot.

Results

Twenty-nine studies were included in this meta-analysis and a total of 1,093,270 participants aged 65 years and above were enrolled. Among the older adults, frailty was significantly associated with a higher risk for falls, compared with those without frailty (combined RR-relative risk = 1.48, 95% CI-confidence interval: 1.27–1.73, I2=98.9%). In addition, the results of subgroup analysis indicated that men had a higher risk for falls than women among the older adults with frailty (RR 1.94, 95% CI: 1.18–3.2 versus RR 1.44, 95% CI: 1.24–1.67). Subgroup analysis by different frailty assessment tools revealed an increased risk of falls in older adults with frailty when assessed using the Frailty Phenotype (combined RR 1.32, 95%CI: 1.17–1.48), FRAIL score (combined RR 1.82, 95%CI: 1.36–2.43), and Study of Osteoporotic Fractures index (combined RR 1.54, 95%CI: 1.10–2.16). Furthermore, subgroup analysis by areas and level of national economic development found the highest fall risk in Oceania (combined RR 2.35, 95%CI: 2.28–2.43) and the lowest in Europe (combined RR 1.20, 95%CI: 1.05–1.38). Developed countries exhibited a lower fall risk compared to developing countries (combined RR 1.44, 95%CI: 1.21–1.71). Analysis by year of publication showed the highest fall risk between 2013–2019 (combined RR 1.79, 95%CI: 1.45–2.20) and the lowest between 2001–2013 (combined RR 1.21, 95%CI: 1.13–1.29).

Conclusion

Frailty represents a significant risk factor for falls in older adults, with the degree of risk varying according to the different frailty assessment tools employed, and notably highest when using the FRAIL scale. Additionally, factors such as gender, areas, level of national economic development, and healthcare managers’ understanding of frailty may all impact the correlation between frailty and falls. Thus, it’s imperative to select suitable frailty diagnostic tools tailored to the specific characteristics of the population in question. This, in turn, facilitates the accurate identification of frailty in older adults and informs the development of appropriate preventive and therapeutic strategies to mitigate fall risk.

Le texte complet de cet article est disponible en PDF.

Key words : Elder people, falls, frailty


Plan


© 2023  © 2023 SERDI Publisher.. Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 27 - N° 6

P. 487-495 - juin 2023 Retour au numéro
Article précédent Article précédent
  • Dietary Total Antioxidant Capacity and Cognitive Function in Older Adults in the United States: The NHANES 2011–2014
  • M. Peng, Y. Liu, X. Jia, Y. Wu, X. Zou, M. Ke, K. Cai, L. Zhang, Dan Lu, Anding Xu

Bienvenue sur EM-consulte, la référence des professionnels de santé.

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2025 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.