S'abonner

The effect of pre-COVID and post-COVID vaccination on long COVID: A systematic review and meta-analysis - 06/12/24

Doi : 10.1016/j.jinf.2024.106358 
Nick King Ngai Chow a, b, 1, Charmaine Yuk Wah Tsang a, b, 1, Yan Hei Chan a, b, Shalina Alisha Telaga a, b, Lok Yan Andes Ng a, b, Chit Ming Chung a, b, Yan Ming Yip a, b, Peter Pak-Hang Cheung a, b,
a Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong 
b Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong 

Correspondence to: Department of Chemical Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong.Department of Chemical Pathology, Faculty of Medicine, The Chinese University of Hong KongHong Kong

Bienvenue sur EM-consulte, la référence des professionnels de santé.
Article gratuit.

Connectez-vous pour en bénéficier!

Summary

Background

Long COVID affects millions of people and results in a substantial decrease in quality of life. Previous primary studies and reviews attempted to study the effect of vaccination against long COVID, but these studies varied in the cut-off time of long COVID. We adhered to the WHO’s definition of long COVID and conducted a systematic review and meta-analysis on the effect of pre-COVID and post-COVID vaccination on long COVID.

Methods

We obtained data from 13 databases up to 18 February 2024, including peer reviewed and preprint studies. Our inclusion criteria were: (1) long COVID definition as 3 months or beyond, (2) comparing long COVID symptoms between vaccinated and unvaccinated groups, (3) subjects received vaccinations either before or after infected with COVID, (4) the number of doses received by participants was specified. We extracted study characteristics and data and computed the summary odds ratio (OR) with the DerSimonian and Laird random effects model. We then performed subgroup analyses based on the main vaccine brand and long COVID assessment method. ROBINS-I framework was used for assessment of risk of bias and the GRADE approach was used for evaluating the certainty of evidence.

Findings

We included data from 25 observational studies (n = 14,128,260) with no randomised controlled trials. One-dose pre-COVID vaccination did not have an effect on long COVID (number of studies = 10, summary OR = 1.01, 95% CI = 0.88–1.15, p-value = 0.896). Two-dose pre-COVID vaccination was associated with a 24% reduced odds of long COVID (number of studies = 15, summary OR = 0.76, 95% CI = 0.65–0.89, p-value = 0.001) and 4 symptoms (fatigue, headache, loss of smell, muscle pain) out of 10 symptoms analysed. The OR of three-dose pre-COVID vaccination against overall long COVID was statistically insignificant but was far away from 1 (number of studies = 3, summary OR = 0.31, 95% CI = 0.05–1.84, p-value = 0.198). One-dose post-COVID vaccination was associated with a 15% reduced odds of long COVID (number of studies = 5, summary OR = 0.85, 95% CI = 0.73–0.98, p-value = 0.024). The OR of two-dose post-COVID vaccination against long COVID was statistically insignificant but was far away from 1 (number of studies = 3, summary OR = 0.63, 95% CI = 0.38–1.03, p-value = 0.066).

Interpretation

Our study suggests that 2-dose pre-COVID vaccination and 1-dose post-COVID vaccination are associated with a lower risk of long COVID. Since long COVID reduces quality of life substantially, vaccination could be a possible measure to maintain quality of life by partially protecting against long COVID.

Le texte complet de cet article est disponible en PDF.

Highlights

We reviewed 25 studies on the relationship between vaccination and long COVID.
We performed meta-analysis with the DerSimonian and Laird random effects model.
2-dose pre-COVID vaccination was associated with 24% reduced odds of long COVID.
1-dose post-COVID vaccination was associated with 15% reduced odds of long COVID.
Vaccination could partially protect against long COVID and maintain quality of life.

Le texte complet de cet article est disponible en PDF.

Keywords : Long COVID, Vaccination, Meta-analysis, Systematic review, Odds ratio


Plan


© 2024  The Author(s). Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 89 - N° 6

Article 106358- décembre 2024 Retour au numéro
Article précédent Article précédent
  • Real-world effectiveness and safety of azvudine in hospitalized patients with SARS-CoV-2 infection: A multicenter, retrospective cohort study
  • Zhigang Ren, Mengzhao Yang, Guanyue Su, Guowu Qian, Yiqiang Yuan, Jia Yu, Silin Li, Changshuang Wang, Mingxia Lu, Hong Luo, Shixi Zhang, Guangming Li, Donghua Zhang, Ling Wang, Guotao Li, Xiaoli Jin, Juan Wang, Mingming Wang, Ming Cheng, Haiyu Wang, Junbiao Chang, Zujiang Yu
| Article suivant Article suivant
  • Comparison of two rapid host-response tests for distinguishing bacterial and viral infection in adults with acute respiratory infection
  • Bilge Eylem Dedeoglu, Alex R. Tanner, Nathan J. Brendish, Helen E. Moyses, Tristan W. Clark

Bienvenue sur EM-consulte, la référence des professionnels de santé.

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2025 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.