S'abonner

Impact of the vaccination against SARS-CoV-2 campaign on disproportionality indicator from the WHO pharmacovigilance database: A competition bias study from case/non-case analysis - 24/11/24

Doi : 10.1016/j.therap.2024.03.002 
Francis Adjaï a, Dorine Fournier a, Charles Dolladille b, c, Bénédicte Lebrun-Vignes a, b, Kevin Bihan a,
a Department of Pharmacology, Regional Pharmacovigilance Center Pitié-Saint-Antoine, Pitié-Salpêtrière Hospital, 75000 Paris, France 
b Inserm, UMR ICAN 1166, CIC-1421, Department of Pharmacology, Faculty of Medicine, Pharmacovigilance Unit, Pitié-Salpêtrière Hospital, Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Universités, UPMC University Paris 06, AP–HP, 75000 Paris, France 
c Department of Pharmacology, Pharmaco-Epidemiology Unit, Caen University Hospital, 14000 Caen, France 

Corresponding author. Pharmacology Department, Pitié-Salpêtrière Hospital, 47-83, boulevard de l’Hôpital, 75013 Paris, France.Pharmacology Department, Pitié-Salpêtrière Hospital47-83, boulevard de l’HôpitalParis75013France

Summary

Introduction

The coronavirus disease 2019 (COVID-19) vaccination campaign has resulted in numerous pharmacovigilance's safety reports which were recorded in the World Health Organization (WHO) pharmacovigilance database (VigiBase) and represent in July 2022 more than 10% of cases recorded. The information component (IC) is a statistical disproportionality measure based on the observed and expected numbers of case reports. A positive value of the lower endpoint of a 95% credibility interval for the information component (IC0.25) suggests a possible causal relationship between the drug and the adverse reaction. This study aimed to evaluate the impact of the wave of COVID-19 vaccines safety declarations on IC0.25 from Vigilyze and thus illustrate with a concrete example the competition bias.

Methods

We arbitrarily selected 21 adverse drug reactions using Medical Dictionary for Regulatory Activities (MedDRA) preferred terms (PTs), divided in two types: PTs known to be related to COVID-19 vaccines (“expected”) and others (type “unexpected”). Data were extracted from VigiLyze. We created two groups: V+ (the full database, including COVID-19 vaccines reports) and V− (the same extraction without COVID-19 vaccine reports). IC0.25 was recomputed for the group V− and we compared the positive signal evolution in the two settings of selection (V+ and V− groups).

Results

The number of positive potential signals was significantly different in the groups V+ and V− for IC0.25. We observed that most of the “unexpected” PTs lost potential signal after the withdrawal of COVID-19 reports. On the contrary, the majority of ‘expected’ PTs had potential new signals after the withdrawal of COVID-19 reports.

Discussion

This study is one of the first to evaluate the effect of COVID-19 vaccines reporting on Automated Signal Detection of Pharmacovigilance. In this study, we observed that a wave of pharmacovigilance reporting can affect disproportionality estimators such as IC0.25 and then have an impact on automated signal detection; some signals disappear (almost with all PTs related to COVID-19 vaccines) and others appear (mostly with PTs not related to COVID-19 vaccines), illustrating the competition bias.

Conclusion

We show that a health crisis involving a change in drug use can affect adverse drug reactions reporting and pharmacovigilance databases, leading to competition bias and a change in the disproportionality analyses. For health professionals who use quantitative disproportionality analysis, it is important not only to use the crude values of indicators but also the kind of PTs and the evolution of the signal over time (take into account major events such as crises).

Le texte complet de cet article est disponible en PDF.

Keywords : COVID-19 vaccines, Pharmacovigilance, Adverse drug reaction, Disproportionality analysis, Vigibase


Plan


© 2024  The Authors. Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 79 - N° 6

janvier 2024 Retour au numéro
Article précédent Article précédent
  • The Christmas adverse event syndrome: An analysis of the WHO pharmacovigilance database
  • Alex Hlavaty, Matthieu Roustit, Marc Manceau, Jean-Luc Cracowski, Charles Khouri
| Article suivant Article suivant
  • Profile of adverse drug reactions reported via the Continuum+ platform: Results from three-year regional follow-up
  • Juliette Henry, Audrey Fresse, Mathilde Beurrier, Marie-Lauren Antoine, Pierre Gillet

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Déjà abonné à cette revue ?

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2024 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.