Personalized Computational Causal Modeling of the Alzheimer Disease Biomarker Cascade - 21/11/24

Doi : 10.14283/jpad.2023.134 
Jeffrey R. Petrella 1, , J. Jiang 1, K. Sreeram 1, S. Dalziel 1, P.M. Doraiswamy 2, W. Hao 3

Alzheimer’s Disease Neuroimaging Initiative

1 Department of Radiology, Duke University School of Medicine, DUMC, Box 3808, 27710-3808, Durham, NC, USA 
2 Departments of Psychiatry and Medicine, Duke University School of Medicine; Duke Institute for Brain Sciences, DUMC, Box 3808, 27710-3808, Durham, NC, USA 
3 Department of Mathematics, Pennsylvania State University, McAllister Bldg 208, 16802, Carlisle, PA, USA 

a jeffrey.petrella@duke.edu jeffrey.petrella@duke.edu

Bienvenue sur EM-consulte, la référence des professionnels de santé.
Article gratuit.

Connectez-vous pour en bénéficier!

Abstract

Background

Mathematical models of complex diseases, such as Alzheimer’s disease, have the potential to play a significant role in personalized medicine. Specifically, models can be personalized by fitting parameters with individual data for the purpose of discovering primary underlying disease drivers, predicting natural history, and assessing the effects of theoretical interventions. Previous work in causal/mechanistic modeling of Alzheimer’s Disease progression has modeled the disease at the cellular level and on a short time scale, such as minutes to hours. No previous studies have addressed mechanistic modeling on a personalized level using clinically validated biomarkers in individual subjects.

Objectives

This study aimed to investigate the feasibility of personalizing a causal model of Alzheimer’s Disease progression using longitudinal biomarker data.

Design/Setting/Participants/Measurements

We chose the Alzheimer Disease Biomarker Cascade model, a widely-referenced hypothetical model of Alzheimer’s Disease based on the amyloid cascade hypothesis, which we had previously implemented mathematically as a mechanistic model. We used available longitudinal demographic and serial biomarker data in over 800 subjects across the cognitive spectrum from the Alzheimer’s Disease Neuroimaging Initiative. The data included participants that were cognitively normal, had mild cognitive impairment, or were diagnosed with dementia (probable Alzheimer’s Disease). The model consisted of a sparse system of differential equations involving four measurable biomarkers based on cerebrospinal fluid proteins, imaging, and cognitive testing data.

Results

Personalization of the Alzheimer Disease Biomarker Cascade model with individual serial biomarker data yielded fourteen personalized parameters in each subject reflecting physiologically meaningful characteristics. These included growth rates, latency values, and carrying capacities of the various biomarkers, most of which demonstrated significant differences across clinical diagnostic groups. The model fits to training data across the entire cohort had a root mean squared error (RMSE) of 0.09 (SD 0.081) on a variable scale between zero and one, and were robust, with over 90% of subjects showing an RMSE of < 0.2. Similarly, in a subset of subjects with data on all four biomarkers in at least one test set, performance was high on the test sets, with a mean RMSE of 0.15 (SD 0.117), with 80% of subjects demonstrating an RMSE < 0.2 in the estimation of future biomarker points. Cluster analysis of parameters revealed two distinct endophenotypic groups, with distinct biomarker profiles and disease trajectories.

Conclusion

Results support the feasibility of personalizing mechanistic models based on individual biomarker trajectories and suggest that this approach may be useful for reclassifying subjects on the Alzheimer’s clinical spectrum. This computational modeling approach is not limited to the Alzheimer Disease Biomarker Cascade hypothesis, and can be applied to any mechanistic hypothesis of disease progression in the Alzheimer’s field that can be monitored with biomarkers. Thus, it offers a computational platform to compare and validate various disease hypotheses, personalize individual biomarker trajectories and predict individual response to theoretical prevention and therapeutic intervention strategies.

Le texte complet de cet article est disponible en PDF.

Key words : Mathematical modeling, dementia, Alzheimer’s disease, disease


Plan


 Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: ADNI_Acknowledgement_List.pdf


© 2023  THE AUTHORS. Published by Elsevier Masson SAS on behalf of SERDI Publisher.. Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 11 - N° 2

P. 435-444 - mars 2024 Retour au numéro
Article précédent Article précédent
  • Nanolithium, a New Treatment Approach to Alzheimer’s Disease: A Review of Existing Evidence and Clinical Perspectives
  • Solene Guilliot, E.N. Wilson, J. Touchon, M.E. Soto
| Article suivant Article suivant
  • Fruit Intake and Alzheimer’s Disease: Results from Mendelian Randomization
  • Wan-Zhe Liao, X.-F. Zhu, Q. Xin, Y.-T. Mo, L.-L. Wang, X.-P. He, Xu-Guang Guo

Bienvenue sur EM-consulte, la référence des professionnels de santé.

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2025 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.