Screening over Speech in Unselected Populations for Clinical Trials in AD (PROSPECT-AD): Study Design and Protocol - 21/11/24

Doi : 10.14283/jpad.2023.11 
Alexandra König 1, 2, 3, , N. Linz 3, E. Baykara 3, J. Tröger 3, C. Ritchie 4, S. Saunders 4, S. Teipel 5, 6, S. Köhler 5, G. Sánchez-Benavides 7, 8, 9, O. Grau-Rivera 7, 8, 9, J.D. Gispert 7, 8, 10, S. Palmqvist 11, 12, P. Tideman 11, 12, O. Hansson 11, 12
1 Stars Team, Institut national de recherche en informatique et en automatique (INRIA), Sophia Antipolis, Valbonne, France 
2 Cobtek (Cognition-Behaviour-Technology) Lab, FRIS-University Côte d’azur, Nice, France 
3 ki:elements GmbH, Am Holzbrunnen 1a, D-66121, Saarbrücken, Germany 
4 Edinburgh Dementia Prevention, University of Edinburgh, Edinburgh, UK 
5 Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Rostock, Germany 
6 Department of Psychosomatic and Psychotherapeutic Medicine, University of Rostock, Rostock, Germany 
7 Barcelonaßeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain 
8 IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain 
9 Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain 
10 Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain 
11 Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden 
12 Memory Clinic, Skåne University Hospital, Malmö, Sweden 

a alexandra.koenig@ki-elements.de alexandra.koenig@ki-elements.de

Bienvenue sur EM-consulte, la référence des professionnels de santé.
Article gratuit.

Connectez-vous pour en bénéficier!

Abstract

Background

Speech impairments are an early feature of Alzheimer’s disease (AD) and consequently, analysing speech performance is a promising new digital biomarker for AD screening. Future clinical AD trials on disease modifying drugs will require a shift to very early identification of individuals at risk of dementia. Hence, digital markers of language and speech may offer a method for screening of at-risk populations that are at the earliest stages of AD, eventually in combination with advanced machine learning. To this end, we developed a screening battery consisting of speech-based neurocognitive tests. The automated test performs a remote primary screening using a simple telephone.

Objectives

PROSPECT-AD aims to validate speech biomarkers for identification of individuals with early signs of AD and monitor their longitudinal course through access to well-phenotyped cohorts.

Design

PROSPECT-AD leverages ongoing cohorts such as EPAD (UK), DESCRIBE and DELCODE (Germany), and BioFINDER Primary Care (Sweden) and Beta-AARC (Spain) by adding a collection of speech data over the telephone to existing longitudinal follow-ups. Participants at risk of dementia are recruited from existing parent cohorts across Europe to form an AD ‘probability-spectrum’, i.e., individuals with a low risk to high risk of developing AD dementia. The characterization of cognition, biomarker and risk factor (genetic and environmental) status of each research participants over time combined with audio recordings of speech samples will provide a well-phenotyped population for comparing novel speech markers with current gold standard biomarkers and cognitive scores.

Participants

N= 1000 participants aged 50 or older will be included in total, with a clinical dementia rating scale (CDR) score of 0 or 0.5. The study protocol is planned to run according to sites between 12 and 18 months.

Measurements

The speech protocol includes the following neurocognitive tests which will be administered remotely: Word List [Memory Function], Verbal Fluency [Executive Functions] and spontaneous free speech [Psychological and/ or behavioral symptoms]. Speech features on the linguistic and paralinguistic level will be extracted from the recordings and compared to data from CSF and blood biomarkers, neuroimaging, neuropsychological evaluations, genetic profiles, and family history. Primary candidate marker from speech will be a combination of most significant features in comparison to biomarkers as reference measure.

Machine learning and computational techniques will be employed to identify the most significant speech biomarkers that could represent an early indicator of AD pathology. Furthermore, based on the analysis of speech performances, models will be trained to predict cognitive decline and disease progression across the AD continuum.

Conclusion

The outcome of PROSPECT-AD may support AD drug development research as well as primary or tertiary prevention of dementia by providing a validated tool using a remote approach for identifying individuals at risk of dementia and monitoring individuals over time, either in a screening context or in clinical trials.

Le texte complet de cet article est disponible en PDF.

Key words : Dementia, Alzheimer’s disease, screening, cognitive assessment, speech biomarker, phone-based, machine learning


Plan


© 2023  THE AUTHORS. Published by Elsevier Masson SAS on behalf of SERDI Publisher.. Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 10 - N° 2

P. 314-321 - avril 2023 Retour au numéro
Article précédent Article précédent
  • Predicting Progression from Normal to MCI and from MCI to AD Using Clinical Variables in the National Alzheimer’s Coordinating Center Uniform Data Set Version 3: Application of Machine Learning Models and a Probability Calculator
  • Y. Pang, W. Kukull, M. Sano, R.L. Albin, C. Shen, J. Zhou, Hiroko H. Dodge
| Article suivant Article suivant
  • Memory for Semantically Related Objects Differentiates Cognitively Unimpaired Autosomal Dominant Mutation Carriers from Non-Carrier Family Members
  • J.T. Fox-Fuller, J.E. Martinez, A. Baena, N. Londono, D. Munera, D. Noriega, C. Vila-Castelar, P.A. Aduen, F. Lopera, A. Cronin-Golomb, Yakeel T. Quiroz

Bienvenue sur EM-consulte, la référence des professionnels de santé.

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2024 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.