Prediction of Cognitive Decline for Enrichment of Alzheimer’s Disease Clinical Trials - 21/11/24

Doi : 10.14283/jpad.2022.49 
A. Tam 1, C. Laurent 1, S. Gauthier 2, 3, Christian Dansereau 1,

Alzheimer’s Disease Neuroimaging Initiative

1 Perceiv Research Inc, Montréal, Québec, Canada 
2 McGill University Research Centre for Studies in Aging, Montréal, Québec, Canada 
3 Douglas Hospital Research Centre, Montréal, Québec, Canada 

d christian@perceiv.ai christian@perceiv.ai

Bienvenue sur EM-consulte, la référence des professionnels de santé.
Article gratuit.

Connectez-vous pour en bénéficier!

Abstract

Background

A key issue to Alzheimer’s disease clinical trial failures is poor participant selection. Participants have heterogeneous cognitive trajectories and many do not decline during trials, which reduces a study’s power to detect treatment effects. Trials need enrichment strategies to enroll individuals who are more likely to decline.

Objectives

To develop machine learning models to predict cognitive trajectories in participants with early Alzheimer’s disease and presymptomatic individuals over 24 and 48 months respectively.

Design

Prognostic machine learning models were trained from a combination of demographics, cognitive tests, APOE genotype, and brain imaging data.

Setting

Data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI), National Alzheimer’s Coordinating Center (NACC), Open Access Series of Imaging Studies (OASIS-3), PharmaCog, and a Phase 3 clinical trial in early Alzheimer’s disease were used for this study.

Participants

A total of 2098 participants who had demographics, cognitive tests, APOE genotype, and brain imaging data, as well as follow-up visits for 24–48 months were included.

Measurements

Baseline magnetic resonance imaging, cognitive tests, demographics, and APOE genotype were used to separate decliners, defined as individuals whose CDR-Sum of Boxes scores increased during a predefined time window, from stable individuals. A prognostic model to predict decline at 24 months in early Alzheimer’s disease was trained on 1151 individuals who had baseline diagnoses of mild cognitive impairment and Alzheimer’s dementia from ADNI and NACC. This model was validated on 115 individuals from a placebo arm of a Phase 3 clinical trial and 76 individuals from the PharmaCog dataset. A second prognostic model to predict decline at 48 months in presymptomatic populations was trained on 628 individuals from ADNI and NACC who were cognitively unimpaired at baseline. This model was validated on 128 individuals from OASIS-3.

Results

The models achieved up to 79% area under the curve (cross-validated and out-of-sample). Power analyses showed that using prognostic models to recruit enriched cohorts of predicted decliners can reduce clinical trial sample sizes by as much as 51% while maintaining the same detection power.

Conclusions

Prognostic tools for predicting cognitive decline and enriching clinical trials with participants at the highest risk of decline can improve trial quality, derisk endpoint failures, and accelerate therapeutic development in Alzheimer’s disease.

Le texte complet de cet article est disponible en PDF.

Key words : Alzheimer’s disease, clinical trials, cognitive decline, machine learning, trial enrichment


Plan


 How to cite this article: A. Tam, C. Laurent, S. Gauthier, et al. Prediction of Cognitive Decline for Enrichment of Alzheimer’s Disease Clinical Trials. J Prev Alz Dis 2022;3(9):400-409; jpad.2022.49
Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: ADNI_Acknowledgement_List.pdf
Declarations: Dr Tam, Dr Laurent, and Dr Dansereau are employees of Perceiv Research Inc and hold stocks/stock options in Perceiv Research Inc. Dr Gauthier has nothing to disclose.


© 2022  THE AUTHORS. Published by Elsevier Masson SAS on behalf of SERDI Publisher.. Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 9 - N° 3

P. 400-409 - juillet 2022 Retour au numéro
Article précédent Article précédent
  • The Future of AD Clinical Trials with the Advent of Anti-Amyloid Therapies: An CTAD Task Force Report
  • Julien Delrieu, R.J. Bateman, J. Touchon, M. Sabbagh, J. Cummings
| Article suivant Article suivant
  • Effects of Non-Invasive Brain Stimulation on Alzheimer’s Disease
  • Lihua Gu, H. Xu, F. Qian

Bienvenue sur EM-consulte, la référence des professionnels de santé.

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2024 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.