Feasibility of Using a Wearable Biosensor Device in Patients at Risk for Alzheimer’s Disease Dementia - 21/11/24

Doi : 10.14283/jpad.2019.39 
N. Saif 1, P. Yan 2, K. Niotis 1, O. Scheyer 3, A. Rahman 1, M. Berkowitz 1, R. Krikorian 4, H. Hristov 1, G. Sadek 1, S. Bellara 1, Richard S. Isaacson 1,
1 Department of Neurology, Weill Cornell Medicine and NewYork-Presbyterian, 428 e 72nd Street, Suite 400, 10021, New York, NY, USA 
2 Department of Neurology, Beth Israel Deaconess Medical Center, Boston, USA 
3 School of Law, University of California Los Angeles, Los Angeles, USA 
4 Department of Psychiatry & Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA 

m rii9004@med.cornell.edu

Bienvenue sur EM-consulte, la référence des professionnels de santé.
Article gratuit.

Connectez-vous pour en bénéficier!

Abstract

Background

Alzheimer’s disease (AD) is the most common and most costly chronic neurodegenerative disease globally. AD develops over an extended period prior to cognitive symptoms, leaving a “window of opportunity” for targeted risk-reduction interventions. Further, this pre-dementia phase includes early physiological changes in sleep and autonomic regulation, for which wearable biosensor devices may offer a convenient and cost-effective method to assess AD-risk.

Methods

Patients with a family history of AD and no or minimal cognitive complaints were recruited from the Alzheimer’s Prevention Clinic at Weill Cornell Medicine & New York-Presbyterian. Of the 40 consecutive patients screened, 34 (85%) agreed to wear a wearable biosensor device (WHOOP). One subject (2.5%) lost the device prior to data collection. Of the remaining subjects, 24 were classified as normal cognition and were asymptomatic, 6 were classified as subjective cognitive decline, and 3 were amyloid-positive (one with pre-clinical AD, one with pre-clinical Lewy-Body Dementia, and one with mild cognitive impairment due to AD). Sleep-cycle, autonomic (heart rate variability [HRV]) and activity measures were collected via WHOOP. Blood biomarkers and neuropsychological testing sensitive to cognitive changes in pre-clinical AD were obtained. Participants completed surveys assessing their sleep-patterns, exercise habits, and attitudes towards WHOOP. The goal of this prospective observational study was to determine the feasibility of using a wrist-worn biosensor device in patients at-risk for AD dementia. Unsupervised machine learning was performed to first separate participants into distinct phenotypic groups using the multivariate biometric data. Additional statistical analyses were conducted to examine correlations between individual biometric measures and cognitive performance.

Results

27 (81.8%) participants completed the follow-up surveys. Twenty-four participants (88.9%) were satisfied with WHOOP after six months, and twenty-three (85.2%) wanted to continue wearing WHOOP. K-means clustering separated participants into two groups. Group 1 was older, had lower HRV, and spent more time in slow-wave sleep (SWS) than Group 2. Group 1 performed better on two cognitive tests assessing executive function: Flanker Inhibitory Attention/Control (FIAC) (p=.031), and Dimensional Change Card Sort (DCCS) (p=.061). In Group 1, DCCS was correlated with SWS (ϱ=.68, p=0.024) and HRV (ϱ=.6, p=0.019). In Group 2, DCCS was correlated with HRV (ϱ=.55, p=0.018). There were no significant differences in blood biomarkers between the two groups.

Conclusions

Wearable biosensor devices may be a feasible tool to assess AD-related physiological changes. Longitudinal collection of sleep and HRV data may potentially be a noninvasive method for monitoring cognitive changes related to pre-clinical AD. Further study is warranted in larger populations.

Le texte complet de cet article est disponible en PDF.

Key words : Alzheimer’s disease, actinography, unsupervised machine learning, early detection, biosensor devices


Plan


 Both authors contributed equally to this work


© 2019  THE AUTHORS. Published by Elsevier Masson SAS on behalf of SERDI Publisher.. Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 7 - N° 2

P. 104-111 - mars 2020 Retour au numéro
Article précédent Article précédent
  • Effects of Rice Wine Lees on Cognitive Function in Community-Dwelling Physically Active Older Adults: A Pilot Randomized Controlled Trial
  • Narumi Nagai, N. Shindo, A. Wada, H. Izu, T. Fujii, K. Matsubara, Y. Wada, N. Sakane
| Article suivant Article suivant
  • Effects of a Group-Based 8-Week Multicomponent Cognitive Training on Cognition, Mood and Activities of Daily Living among Healthy Older Adults: A One-Year Follow-Up of a Randomized Controlled Trial
  • Patsri Srisuwan, D. Nakawiro, S. Chansirikarnjana, O. Kuha, P. Chaikongthong, T. Suwannagoot

Bienvenue sur EM-consulte, la référence des professionnels de santé.

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2024 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.