Predicting Brain Amyloid Status Using the National Institute of Health Toolbox (NIHTB) for Assessment of Neurological and Behavioral Function - 21/11/24

Doi : 10.14283/jpad.2024.77 
Y. Cheng 1, E. Ho 3, S. Weintraub 3, D. Rentz 1, 2, R. Gershon 3, Sudeshna Das 1, , Hiroko H. Dodge 1,
1 Massachusetts General Hospital, Harvard Medical School, 02114, Boston, MA, USA 
2 Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA 
3 Northwestern University, Chicago, IL, USA 

g hdodge@mgh.harvard.edu hdodge@mgh.harvard.edu f sdas5@mgh.harvard.edu sdas5@mgh.harvard.edu

Bienvenue sur EM-consulte, la référence des professionnels de santé.
Article gratuit.

Connectez-vous pour en bénéficier!

Abstract

Background

Amyloid-beta (Aβ) plaque is a neuropathological hallmark of Alzheimer’s disease (AD). As anti-amyloid monoclonal antibodies enter the market, predicting brain amyloid status is critical to determine treatment eligibility.

Objective

To predict brain amyloid status utilizing machine learning approaches in the Advancing Reliable Measurement in Alzheimer’s Disease and Cognitive Aging (ARMADA) study.

Design

ARMADA is a multisite study that implemented the National Institute of Health Toolbox for Assessment of Neurological and Behavioral Function (NIHTB) in older adults with different cognitive ability levels (normal, mild cognitive impairment, early-stage dementia of the AD type).

Setting

Participants across various sites were involved in the ARMADA study for validating the NIHTB.

Participants

199 ARMADA participants had either PET or CSF information (mean age 76.3 ± 7.7, 51.3% women, 42.3% some or complete college education, 50.3% graduate education, 88.9% White, 33.2% with positive AD biomarkers).

Measurements

We used cognition, emotion, motor, sensation scores from NIHTB, and demographics to predict amyloid status measured by PET or CSF. We applied LASSO and random forest models and used the area under the receiver operating curve (AUROC) to evaluate the ability to identify amyloid positivity.

Results

The random forest model reached AUROC of 0.74 with higher specificity than sensitivity (AUROC 95% CI:0.73 -0.76, Sensitivity 0.50, Specificity 0.88) on the held-out test set; higher than the LASSO model (0.68 (95% CI:0.68 – 0.69)). The 10 features with the highest importance from the random forest model are: picture sequence memory, cognition total composite, cognition fluid composite, list sorting working memory, words-in-noise test (hearing), pattern comparison processing speed, odor identification, 2-minutes-walk endurance, 4-meter walk gait speed, and picture vocabulary. Overall, our model revealed the validity of measurements in cognition, motor, and sensation domains, in associating with AD biomarkers.

Conclusion

Our results support the utilization of the NIH toolbox as an efficient and standardizable AD biomarker measurement that is better at identifying amyloid negative (i.e., high specificity) than positive cases (i.e., low sensitivity).

Le texte complet de cet article est disponible en PDF.

Key words : Amyloid beta, NIH Toolbox, cognition, motor, machine learning


Plan


© 2024  THE AUTHORS. Published by Elsevier Masson SAS on behalf of SERDI Publisher.. Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 11 - N° 4

P. 943-957 - août 2024 Retour au numéro
Article précédent Article précédent
  • Optimising Alzheimer’s Disease Diagnosis and Treatment: Assessing Cost-Utility of Integrating Blood Biomarkers in Clinical Practice for Disease-Modifying Treatment
  • Sandar Aye, R. Handels, B. Winblad, L. Jönsson
| Article suivant Article suivant
  • Value of Knowing: Health-Related Behavior Changes following Amyloid PET Results Disclosure in Mild Cognitive Impairment
  • Y. Wang, D. Ren, J.S. Roberts, L.K. Tamres, J.H. Lingler

Bienvenue sur EM-consulte, la référence des professionnels de santé.

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2025 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.