S'abonner

Artificial Intelligence for Response Assessment in Neuro Oncology (AI-RANO), part 2: recommendations for standardisation, validation, and good clinical practice - 29/10/24

Doi : 10.1016/S1470-2045(24)00315-2 
Spyridon Bakas, PhD a, b, c, d, e, f, , Philipp Vollmuth, ProfMD MBA g, h, i, Norbert Galldiks, ProfMD j, k, Thomas C Booth, MD PhD l, m, Hugo J W L Aerts, PhD n, p, q, Wenya Linda Bi, MD PhD o, Benedikt Wiestler, MD PhD r, Pallavi Tiwari, PhD s, Sarthak Pati, MSc a, Ujjwal Baid, PhD a, b, e, Evan Calabrese, MD PhD t, Philipp Lohmann, PhD j, w, Martha Nowosielski, MD PhD x, Rajan Jain, ProfMD y, Rivka Colen, ProfMD z, Marwa Ismail, PhD s, Ghulam Rasool, PhD ag, Janine M Lupo, ProfPhD u, Hamed Akbari, MD PhD aa, Joerg C Tonn, ProfMD ab, ac, David Macdonald, ProfMD ad, Michael Vogelbaum, ProfMD PhD ae, af, ah, Susan M Chang, ProfMD v, Christos Davatzikos, ProfPhD ai, aj, Javier E Villanueva-Meyer, MD u, Raymond Y Huang, MD PhD n
for the

Response Assessment in Neuro Oncology (RANO) group

a Department of Pathology & Laboratory Medicine, Division of Computational Pathology, Indiana University, Indianopolis, IN, USA 
b Department of Radiology & Imaging Sciences, School of Medicine, Indiana University, Indianapolis, IN, USA 
c Department of Neurological Surgery, School of Medicine, Indiana University, Indianapolis, IN, USA 
d Department of Biostatistics and Health Data Science, School of Medicine, Indiana University, Indianapolis, IN, USA 
e Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianopolis, IN, USA 
f Department of Computer Science, Luddy School of Informatics, Computing, and Engineering, Indiana University, Indianapolis, IN, USA 
g Division for Computational Radiology and Clinical AI, Clinic for Neuroradiology, University Hospital Bonn, Bonn, Germany 
h Faculty of Medicine, University of Bonn, Bonn, Germany 
i Division for Medical Image Computing, German Cancer Research Center, Heidelberg, Germany 
j Department of Neurology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany 
k Institute of Neuroscience and Medicine, Research Center Juelich, Juelich, Germany 
l School of Biomedical Engineering & Imaging Sciences, King’s College London, London, UK 
m Department of Neuroradiology, King’s College Hospital NHS Foundation Trust, London, UK 
n Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA 
o Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA 
p Artificial Intelligence in Medicine Program, Mass General Brigham, Harvard Medical School, Boston, MA, USA 
q Radiology and Nuclear Medicine, Maastricht University, Maastricht, Netherlands 
r Department of Neuroradiology, University Hospital, Technical University of Munich, Munich, Germany 
s Department of Radiology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA 
t Department of Radiology, School of Medicine, Duke University, Durham, NC, USA 
u Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA 
v Department of Neurological Surgery, Division of Neuro-Oncology, University of California San Francisco, San Francisco, CA, USA 
w Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany 
x Department of Neurology, Medical University Innsbruck, Innsbruck, Austria 
y Department of Radiology and Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY, USA 
z Department of Radiology, Neuroradiology Division, Center for Artificial Intelligence Innovation in Medical Imaging, University of Pittsburgh, Pittsburgh, PA, USA 
aa Department of Bioengineering, School of Engineering, Santa Clara University, Santa Clara, CA, USA 
ab Department of Neurosurgery, Ludwig-Maximilians-University, Munich, Germany 
ac German Cancer Consortium, Partner Site Munich, Munich, Germany 
ad London Regional Cancer Programme, London, ON, Canada 
ae Department of Neuro-Oncology, H Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA 
af Department of Neurosurgery, H Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA 
ag Department of Machine Learning, H Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA 
ah H Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA 
ai Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA 
aj Center for Artificial Intelligence for Integrated Diagnostics and Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA, USA 

* Correspondence to: Dr Spyridon Bakas, Department of Pathology & Laboratory Medicine, Division of Computational Pathology, Indiana University, Indianopolis, IN 46202, USA Department of Pathology & Laboratory Medicine Division of Computational Pathology Indiana University Indianopolis IN 46202 USA

Summary

Technological advancements have enabled the extended investigation, development, and application of computational approaches in various domains, including health care. A burgeoning number of diagnostic, predictive, prognostic, and monitoring biomarkers are continuously being explored to improve clinical decision making in neuro-oncology. These advancements describe the increasing incorporation of artificial intelligence (AI) algorithms, including the use of radiomics. However, the broad applicability and clinical translation of AI are restricted by concerns about generalisability, reproducibility, scalability, and validation. This Policy Review intends to serve as the leading resource of recommendations for the standardisation and good clinical practice of AI approaches in health care, particularly in neuro-oncology. To this end, we investigate the repeatability, reproducibility, and stability of AI in response assessment in neuro-oncology in studies on factors affecting such computational approaches, and in publicly available open-source data and computational software tools facilitating these goals. The pathway for standardisation and validation of these approaches is discussed with the view of trustworthy AI enabling the next generation of clinical trials. We conclude with an outlook on the future of AI-enabled neuro-oncology.

Le texte complet de cet article est disponible en PDF.

Plan


© 2024  Elsevier Ltd. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 25 - N° 11

P. e589-e601 - novembre 2024 Retour au numéro
Article précédent Article précédent
  • Artificial Intelligence for Response Assessment in Neuro Oncology (AI-RANO), part 1: review of current advancements
  • Javier E Villanueva-Meyer, Spyridon Bakas, Pallavi Tiwari, Janine M Lupo, Evan Calabrese, Christos Davatzikos, Wenya Linda Bi, Marwa Ismail, Hamed Akbari, Philipp Lohmann, Thomas C Booth, Benedikt Wiestler, Hugo J W L Aerts, Ghulam Rasool, Joerg C Tonn, Martha Nowosielski, Rajan Jain, Rivka R Colen, Sarthak Pati, Ujjwal Baid, Philipp Vollmuth, David Macdonald, Michael A Vogelbaum, Susan M Chang, Raymond Y Huang, Norbert Galldiks, Response Assessment in Neuro Oncology (RANO) group
| Article suivant Article suivant
  • Fertility-sparing treatment and follow-up in patients with cervical cancer, ovarian cancer, and borderline ovarian tumours: guidelines from ESGO, ESHRE, and ESGE
  • Philippe Morice, Giovanni Scambia, Nadeem R Abu-Rustum, Maribel Acien, Alessandro Arena, Sara Brucker, Ying Cheong, Pierre Collinet, Francesco Fanfani, Francesca Filippi, Ane Gerda Zahl Eriksson, Sebastien Gouy, Philipp Harter, Xavier Matias-Guiu, George Pados, Maja Pakiz, Denis Querleu, Alexandros Rodolakis, Christine Rousset-Jablonski, Artem Stepanyan, Antonia Carla Testa, Kirsten Tryde Macklon, Dimitrios Tsolakidis, Michel De Vos, François Planchamp, Michaël Grynberg

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Déjà abonné à cette revue ?

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2024 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.