S'abonner

Clustering of clinical symptoms using large language models reveals low diagnostic specificity of proposed alternatives to consensus mast cell activation syndrome criteria - 18/10/24

Doi : 10.1016/j.jaci.2024.09.006 
Benjamin D. Solomon, MD, PhD a, , Purvesh Khatri, PhD b, c
a Department of Pediatrics, Division of Allergy and Immunology, Stanford University, Palo Alto, Calif 
b Institute for Immunity, Transplantation, and Infection, School of Medicine, Stanford University, Palo Alto, Calif 
c Department of Medicine, Center for Biomedical Informatics Research, School of Medicine, Stanford University, Palo Alto, Calif 

Corresponding author: Benjamin D. Solomon, MD, PhD, 269 Campus Dr, CCSR Ste 3215, Stanford, CA 94305-5366.269 Campus DrCCSR Ste 3215StanfordCA94305-5366
Sous presse. Épreuves corrigées par l'auteur. Disponible en ligne depuis le Friday 18 October 2024

Abstract

Background

The rate of diagnosis of mast cell activation syndrome (MCAS) has increased since the disorder’s original description as a mastocytosis-like phenotype. While a set of consortium MCAS criteria is well described and widely accepted, this increase occurs in the setting of a broader set of proposed alternative MCAS criteria.

Objective

Effective diagnostic criteria must minimize the range of unrelated diagnoses that can be erroneously classified as the condition of interest. We sought to determine if the symptoms associated with alternative MCAS criteria result in less concise or consistent diagnostic alternatives, reducing diagnostic specificity.

Methods

We used multiple large language models, including ChatGPT, Claude, and Gemini, to bootstrap the probabilities of diagnoses that are compatible with consortium or alternative MCAS criteria. We utilized diversity and network analyses to quantify diagnostic precision and specificity compared to control diagnostic criteria including systemic lupus erythematosus, Kawasaki disease, and migraines.

Results

Compared to consortium MCAS criteria, alternative MCAS criteria are associated with more variable (Shannon diversity 5.8 vs 4.6, respectively; P = .004) and less precise (mean Bray-Curtis similarity 0.07 vs 0.19, respectively; P = .004) diagnoses. The diagnosis networks derived from consortium and alternative MCAS criteria had lower between-network similarity compared to the similarity between diagnosis networks derived from 2 distinct systemic lupus erythematosus criteria (cosine similarity 0.55 vs 0.86, respectively; P = .0022).

Conclusion

Alternative MCAS criteria are associated with a distinct set of diagnoses compared to consortium MCAS criteria and have lower diagnostic consistency. This lack of specificity is pronounced in relation to multiple control criteria, raising the concern that alternative criteria could disproportionately contribute to MCAS overdiagnosis, to the exclusion of more appropriate diagnoses.

Le texte complet de cet article est disponible en PDF.

Key words : Mast cell, mast cell activation syndrome, mastocytosis, anaphylaxis, artificial intelligence, large language model, natural language processing, generative pretrained transformer

Abbreviations used : ECNM-AIM, ICD, LLM, MCA, MCAD, MCAS, SLE


Plan


© 2024  American Academy of Allergy, Asthma & Immunology. Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Déjà abonné à cette revue ?

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2024 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.