Postoperative facial prediction for mandibular defect based on surface mesh deformation - 04/10/24
Graphical abstract |
Abstract |
Objectives: This study aims to introduce a novel predictive model for the post-operative facial contours of patients with mandibular defect, addressing limitations in current methodologies that fail to preserve geometric features and lack interpretability.
Methods: Utilizing surface mesh theory and deep learning, our model diverges from traditional point cloud approaches by employing surface triangular mesh grids. We extract latent variables using a Mesh Convolutional Restricted Boltzmann Machines (MCRBM) model to generate a three-dimensional deformation field, aiming to enhance geometric information preservation and interpretability.
Results: Experimental evaluations of our model demonstrate a prediction accuracy of 91.2 %, which represents a significant improvement over traditional machine learning-based methods.
Conclusions: The proposed model offers a promising new tool for pre-operative planning in oral and maxillofacial surgery. It significantly enhances the accuracy of post-operative facial contour predictions for mandibular defect reconstructions, providing substantial advancements over previous approaches.
Le texte complet de cet article est disponible en PDF.Keywords : Mandibular defect, Facial prediction, Mandibular reconstruction, Maxillofacial surgery, Deep learning
Abbreviations : MCRBM, FEM, MSM, MTM, GAN, CTGAN, CD, LSPC, P2P-Conv, GMM
Plan
Vol 125 - N° 5S2
Article 101973- octobre 2024 Retour au numéroBienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.
Déjà abonné à cette revue ?