Ultra-high resolution spectral photon-counting CT outperforms dual layer CT for lung imaging: Results of a phantom study - 02/10/24
Highlights |
• | Ultra high-resolution spectral photon-counting CT reduces image noise and improves detectability of lung lesions in an anthropomorphic phantom compared to dual-layer CT. |
• | Image quality obtained with ultra-high resolution spectral photon-counting CT suggests greater potential for ultra-high-resolution dose optimization compared to dual-layer CT. |
• | Lung images obtained with ultra-high resolution spectral photon-counting CT are better rated for clinical use by radiologists at all dose levels. |
Abstract |
Purpose |
The purpose of this study was to compare lung image quality obtained with ultra-high resolution (UHR) spectral photon-counting CT (SPCCT) with that of dual-layer CT (DLCT), at standard and low dose levels using an image quality phantom and an anthropomorphic lung phantom.
Methods |
An image quality phantom was scanned using a clinical SPCCT prototype and an 8 cm collimation DLCT from the same manufacturer at 10 mGy. Additional acquisitions at 6 mGy were performed with SPCCT only. Images were reconstructed with dedicated high-frequency reconstruction kernels, slice thickness between 0.58 and 0.67 mm, and matrix between 5122 and 10242 mm, using a hybrid iterative algorithm at level 6. Noise power spectrum (NPS), task-based transfer function (TTF) for iodine and air inserts, and detectability index (d’) were assessed for ground-glass and solid nodules of 2 mm to simulate highly detailed lung lesions. Subjective analysis of an anthropomorphic lung phantom was performed by two radiologists using a five-point quality score.
Results |
At 10 mGy, noise magnitude was reduced by 29.1 % with SPCCT images compared to DLCT images for all parameters (27.1 ± 11.0 [standard deviation (SD)] HU vs. 38.2 ± 1.0 [SD] HU, respectively). At 6 mGy with SPCCT images, noise magnitude was reduced by 8.9 % compared to DLCT images at 10 mGy (34.8 ± 14.1 [SD] HU vs. 38.2 ± 1.0 [SD] HU, respectively). At 10 mGy and 6 mGy, average NPS spatial frequency (fav) was greater for SPCCT images (0.75 ± 0.17 [SD] mm-1) compared to DLCT images at 10 mGy (0.55 ± 0.04 [SD] mm-1) while remaining constant from 10 to 6 mGy. At 10 mGy, TTF at 50 % (f50) was greater for SPCCT images (0.92 ± 0.08 [SD] mm-1) compared to DLCT images (0.67 ± 0.06 [SD] mm-1) for both inserts. At 6 mGy, f50 decreased by 1.1 % for SPCCT images, while remaining greater compared to DLCT images at 10 mGy (0.91 ± 0.06 [SD] mm-1 vs. 0.67 ± 0.06 [SD] mm-1, respectively). At both dose levels, d’ were greater for SPCCT images compared to DLCT for all clinical tasks. Subjective analysis performed by two radiologists revealed a greater median image quality for SPCCT (5; Q1, 4; Q3, 5) compared to DLCT images (3; Q1, 3; Q3, 3).
Conclusion |
UHR SPCCT outperforms DLCT in terms of image quality for lung imaging. In addition, UHR SPCCT contributes to a 40 % reduction in radiation dose compared to DLCT.
Le texte complet de cet article est disponible en PDF.Keywords : Iterative reconstruction, Lung, Multidetector computed tomography, Spectral photon- counting CT, Task-based image quality assessment
Abbreviations : CT, CTDIvol, DECT, DLCT, EID, HU, iDose4, NPS, ROI, SD, SPCCT, TTF, UHR
Plan
Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.
Déjà abonné à cette revue ?