A Granular View of Emergency Department Length of Stay: Improving Predictive Power and Extracting Real-Time, Actionable Insights - 19/09/24
Abstract |
Study objective |
Improved understanding of factors affecting prolonged emergency department (ED) length of stay is crucial to improving patient outcomes. Our investigation builds on prior work by considering ED length of stay in operationally distinct time periods and using benchmark and novel machine learning techniques applied only to data that would be available to ED operators in real time.
Methods |
This study was a retrospective review of patient visits over 1 year at 2 urban EDs, including 1 academic and 1 academically affiliated ED, and 2 suburban, community EDs. ED length of stay was partitioned into 3 components: arrival-to-room, room-to-disposition, and admit disposition to departure. Prolonged length of stay for each component was considered beyond 1, 3, and 2 hours, respectively. Classification models (logistic regression, random forest, and XGBoost) were applied, and important features were evaluated.
Results |
In total, 135,044 unique patient encounters were evaluated for the arrival-to-room, room-to-disposition, and admit disposition-to-departure models, which had accuracy ranges of 84% to 96%, 66% to 77%, and 62% to 72%, respectively. Waiting room and ED volumes were important features in all arrival-to-room models. Room-to-disposition results identified patient characteristics and ED volume as the most important features for prediction. Boarder volume was an important feature of the admit disposition-to-departure models for all sites. Academic site models noted nurse staffing ratios as important, whereas community site models noted hospital capacity and surgical volume as important for admit disposition-to-departure prediction.
Conclusion |
This study identified granular capacity, flow, and nurse staffing predictors of ED length of stay not previously reported in the literature. Our novel methodology allowed for more accurate and operationally meaningful findings compared to prior modeling methods.
Le texte complet de cet article est disponible en PDF.Plan
Supervising editor: Stephen Schenkel, MD, MPP. Specific detailed information about possible conflict of interest for individual editors is available at editors. |
|
Author contributions: MMC, DP, GP, OS, and AT conceived of the study and designed the methodology. All authors developed the included models’ features. MMC, DP, GP, OS, and AT analyzed the data set and created the models. MMC drafted the manuscript, and all authors contributed substantially to its revision. MMC takes responsibility for the paper as a whole. |
|
Data sharing statement: Datasets are not available for review due to data use agreement limitations in sharing a limited, deidentified dataset from the study site's overarching legal team. |
|
Authorship: All authors attest to meeting the four ICMJE.org authorship criteria: (1) Substantial contributions to the conception or design of the work; or the acquisition, analysis, or interpretation of data for the work; AND (2) Drafting the work or revising it critically for important intellectual content; AND (3) Final approval of the version to be published; AND (4) Agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. |
|
Funding and support: By Annals’ policy, all authors are required to disclose any and all commercial, financial, and other relationships in any way related to the subject of this article as per ICMJE conflict of interest guidelines (see www.icmje.org/). The authors have stated that no such relationships exist. |
|
Presentation information: This study was presented at the following meetings: Institute for Operations Research and the Management Sciences Conference (Anaheim, CA on October 24, 2021) and American College of Emergency Physicians Scientific Assembly (Boston, MA on October 27, 2021). |
|
Please see page 387 for the Editor’s Capsule Summary of this article. |
|
A podcast for this article is available at www.annemergmed.com. |
|
Readers: click on the link to go directly to a survey in which you can provide Y3T9S6Q to Annals on this particular article. |
Vol 84 - N° 4
P. 386-398 - octobre 2024 Retour au numéroBienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.
Déjà abonné à cette revue ?