S'abonner

A Granular View of Emergency Department Length of Stay: Improving Predictive Power and Extracting Real-Time, Actionable Insights - 19/09/24

Doi : 10.1016/j.annemergmed.2024.02.004 
Maureen M. Canellas, MD, MBA a, , Kevin A. Kotkowski, MD, MBA a, Dessislava A. Pachamanova, PhD b, Georgia Perakis, PhD c, Martin A. Reznek, MD, MBA a, Omar Skali Lami, PhD d, Asterios Tsiourvas, MSc d
a Department of Emergency Medicine University of Massachusetts Medical School, Worcester, MA 
b Mathematics, Analytics, Science and Technology Division, Babson College, Babson Park, MA 
c Sloan School of Management, MIT, Cambridge, MA 
d Operations Research Center, MIT, Cambridge, MA 

Corresponding Author.

Abstract

Study objective

Improved understanding of factors affecting prolonged emergency department (ED) length of stay is crucial to improving patient outcomes. Our investigation builds on prior work by considering ED length of stay in operationally distinct time periods and using benchmark and novel machine learning techniques applied only to data that would be available to ED operators in real time.

Methods

This study was a retrospective review of patient visits over 1 year at 2 urban EDs, including 1 academic and 1 academically affiliated ED, and 2 suburban, community EDs. ED length of stay was partitioned into 3 components: arrival-to-room, room-to-disposition, and admit disposition to departure. Prolonged length of stay for each component was considered beyond 1, 3, and 2 hours, respectively. Classification models (logistic regression, random forest, and XGBoost) were applied, and important features were evaluated.

Results

In total, 135,044 unique patient encounters were evaluated for the arrival-to-room, room-to-disposition, and admit disposition-to-departure models, which had accuracy ranges of 84% to 96%, 66% to 77%, and 62% to 72%, respectively. Waiting room and ED volumes were important features in all arrival-to-room models. Room-to-disposition results identified patient characteristics and ED volume as the most important features for prediction. Boarder volume was an important feature of the admit disposition-to-departure models for all sites. Academic site models noted nurse staffing ratios as important, whereas community site models noted hospital capacity and surgical volume as important for admit disposition-to-departure prediction.

Conclusion

This study identified granular capacity, flow, and nurse staffing predictors of ED length of stay not previously reported in the literature. Our novel methodology allowed for more accurate and operationally meaningful findings compared to prior modeling methods.

Le texte complet de cet article est disponible en PDF.

Plan


 Supervising editor: Stephen Schenkel, MD, MPP. Specific detailed information about possible conflict of interest for individual editors is available at editors.
 Author contributions: MMC, DP, GP, OS, and AT conceived of the study and designed the methodology. All authors developed the included models’ features. MMC, DP, GP, OS, and AT analyzed the data set and created the models. MMC drafted the manuscript, and all authors contributed substantially to its revision. MMC takes responsibility for the paper as a whole.
 Data sharing statement: Datasets are not available for review due to data use agreement limitations in sharing a limited, deidentified dataset from the study site's overarching legal team.
 Authorship: All authors attest to meeting the four ICMJE.org authorship criteria: (1) Substantial contributions to the conception or design of the work; or the acquisition, analysis, or interpretation of data for the work; AND (2) Drafting the work or revising it critically for important intellectual content; AND (3) Final approval of the version to be published; AND (4) Agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.
 Funding and support: By Annals’ policy, all authors are required to disclose any and all commercial, financial, and other relationships in any way related to the subject of this article as per ICMJE conflict of interest guidelines (see www.icmje.org/). The authors have stated that no such relationships exist.
 Presentation information: This study was presented at the following meetings: Institute for Operations Research and the Management Sciences Conference (Anaheim, CA on October 24, 2021) and American College of Emergency Physicians Scientific Assembly (Boston, MA on October 27, 2021).
 Please see page 387 for the Editor’s Capsule Summary of this article.
 A podcast for this article is available at www.annemergmed.com.
 Readers: click on the link to go directly to a survey in which you can provide Y3T9S6Q to Annals on this particular article.


© 2024  American College of Emergency Physicians. Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 84 - N° 4

P. 386-398 - octobre 2024 Retour au numéro
Article précédent Article précédent
  • Measurement of Cost of Boarding in the Emergency Department Using Time-Driven Activity-Based Costing
  • Maureen M. Canellas, Marcella Jewell, Jennifer L. Edwards, Danielle Olivier, Adalia H. Jun-O’Connell, Martin A. Reznek
| Article suivant Article suivant
  • Rapid Acute Coronary Syndrome Evaluation Over One Hour With High-Sensitivity Cardiac Troponin I: A United States-Based Stepped-Wedge, Randomized Trial
  • Joseph Miller, Bernard Cook, Chaun Gandolfo, Nicholas L. Mills, Simon Mahler, Phillip Levy, Sachin Parikh, Seth Krupp, Khaled Nour, Howard Klausner, Ryan Gindi, Aaron Lewandowski, Michael Hudson, Giuseppe Perrotta, Bryan Zweig, David Lanfear, Henry Kim, Shooshan Dangoulian, Amy Tang, Erika Todter, Altaf Khan, Catriona Keerie, Shane Bole, Hashem Nasseredine, Ahmed Oudeif, Elian Abou Asala, Mustafa Mohammed, Ahmed Kazem, Kelly Malette, Gulmohar Singh-Kucukarslan, Nicole Xu, Sophie Wittenberg, Thayer Morton, Satheesh Gunaga, Ziad Affas, Kutiba Tabbaa, Parth Desai, Ayman Alsaadi, Shazil Mahmood, Andrew Schock, Nicholas Konowitz, Joshua Fuchs, Kate Joyce, Lance Shamoun, Jacob Babel, Andrew Broome, Geoffrey Digiacinto, Elizabeth Shaheen, Gale Darnell, Gregory Muller, Gerard Heath, Gust Bills, Jason Vieder, Steven Rockoff, Brian Kim, Anthony Colucci, Elizabeth Plemmons, James McCord, RACE-IT Research Group

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Déjà abonné à cette revue ?

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2025 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.