S'abonner

Radiomics machine learning algorithm facilitates detection of small pancreatic neuroendocrine tumors on CT - 15/09/24

Doi : 10.1016/j.diii.2024.08.003 
Felipe Lopez-Ramirez a, 1, Sahar Soleimani a, 1, Javad R. Azadi a, Sheila Sheth a, b, Satomi Kawamoto a, Ammar A. Javed c, Florent Tixier a, Ralph H. Hruban d, e, Elliot K. Fishman a, Linda C. Chu a,
a Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA 
b Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA 
c Department of Surgery, New York University Grossman School of Medicine, New York, NY, 10016, USA 
d Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA 
e Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA 

Corresponding author.
Sous presse. Épreuves corrigées par l'auteur. Disponible en ligne depuis le Sunday 15 September 2024

Highlights

Radiomics features can be used effectively to identify small pancreatic neuroendocrine tumors more accurately and with better sensitivity than expert radiologists on CT.
Integrating automated segmentation algorithms with radiomics models facilitates the incorporation of classification models into clinical practice.
Adequate feature selection shows that radiomics-based algorithms can have stable performance from features extracted from manual or automated segmentations.
Radiomics features based models show promising performance to detect small pancreatic neuroendocrine tumors, complementing the expertise of radiologists and offering a promising screening tool.

Le texte complet de cet article est disponible en PDF.

Abstract

Purpose

The purpose of this study was to develop a radiomics-based algorithm to identify small pancreatic neuroendocrine tumors (PanNETs) on CT and evaluate its robustness across manual and automated segmentations, exploring the feasibility of automated screening.

Materials and methods

Patients with pathologically confirmed T1 stage PanNETs and healthy controls undergoing dual-phase CT imaging were retrospectively identified. Manual segmentation of pancreas and tumors was performed, then automated pancreatic segmentations were generated using a pretrained neural network. A total of 1223 radiomics features were independently extracted from both segmentation volumes, in the arterial and venous phases separately. Ten final features were selected to train classifiers to identify PanNETs and controls. The cohort was divided into training and testing sets, and performance of classifiers was assessed using area under the receiver operator characteristic curve (AUC), specificity and sensitivity, and compared against two radiologists blinded to the diagnoses.

Results

A total of 135 patients with 142 PanNETs, and 135 healthy controls were included. There were 168 women and 102 men, with a mean age of 55.4 ± 11.6 (standard deviation) years (range: 20–85 years). Median PanNET size was 1.3 cm (Q1, 1.0; Q3, 1.5; range: 0.5–1.9). The arterial phase LightGBM model achieved the best performance in the test set, with 90 % sensitivity (95 % confidence interval [CI]: 80–98), 76 % specificity (95 % CI: 62–88) and an AUC of 0.87 (95 % CI: 0.79–0.94). Using features from the automated segmentations, this model achieved an AUC of 0.86 (95 % CI: 0.79–0.93). In comparison, the two radiologists achieved a mean 50 % sensitivity and 100 % specificity using arterial phase CT images.

Conclusion

Radiomics features identify small PanNETs, with stable performance when extracted using automated segmentations. These models demonstrate high sensitivity, complementing the high specificity of radiologists, and could serve as opportunistic screeners.

Le texte complet de cet article est disponible en PDF.

Keywords : Artificial intelligence, Automated screening, Computed tomography, Pancreatic neuroendocrine tumors, Radiomics

Abbreviations : AJCC, AUC, CCC, CI, CT, HIPPA, HU, mRMR, PanNET, SD


Plan


© 2024  Société française de radiologie. Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Déjà abonné à cette revue ?

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2024 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.