S'abonner

Electrocardiogram Signal Compression Using Deep Convolutional Autoencoder with Constant Error and Flexible Compression Rate - 14/09/24

Doi : 10.1016/j.irbm.2024.100859 
Tahir Bekiryazıcı, Gürkan Aydemir , Hakan Gürkan
 Department of Electrical and Electronics Engineering, Bursa Technical University, 16130, Bursa, Turkiye 

Corresponding author.

Abstract

Objectives

Electrocardiogram (ECG) signals are beneficial for diagnosing cardiac diseases. The cardiac patients' life quality likely increases with continuous or long-period recording and monitoring of ECG signals, leading to better and early diagnosis of disease and heart attacks. However, continuous ECG recording necessitates high data rates and storage, which means high costs. Therefore, ECG compression is a handy concept that facilitates continuous monitoring of ECG signals. Deep neural networks open up new horizons for compression and also for ECG compression by providing high compression rates and quality. Although they bring constant compression ratios with better average quality, the compression quality of individual samples is not guaranteed, which may lead to misdiagnoses. This study aims to investigate the effect of compression quality on the diagnoses and to develop a deep neural network-based compression strategy that guarantees a quality-bound in return for varying compression ratios.

Materials and methods

The effect of the compression quality on the arrhythmia diagnoses is tested by comparing the performance of the deep learning-based ECG classifier on the original ECG recordings and the distorted recordings using a lossy compression algorithm with different compression error levels. Then, a compression error upper limit is calculated in terms of normalized percent root mean square difference (PRDN) error, which also coincides with the findings of the previous studies in the literature. Lastly, to enable deep learning in ECG compression, a single encoder-multi-decoder convolutional autoencoder architecture, and multiple quantization levels are proposed to guarantee a desired upper limit on the error rate.

Results

The efficiency of the proposed method is demonstrated on a popular benchmark data set for ECG compression methods using a transfer learning approach. The PRDN error is fixed to various values, and the average compression rates are reported. An average of   compression is achieved for a 10% PRDN error rate, assessed as a fair quality threshold for reconstruction error. It has also been shown that the compression model has a runtime that can be run in real-time on wearable devices such as commercial smartwatches.

Conclusion

This study proposes a deep learning-based ECG compression algorithm that guarantees a desired upper limit on the compression error. This model may facilitate an eHealth solution for continuous monitoring of ECG signals of individuals, especially cardiac patients.

Le texte complet de cet article est disponible en PDF.

Graphical abstract

Le texte complet de cet article est disponible en PDF.

Highlights

Lossy compression algorithms may lead to misdiagnoses by distorting ECG signals.
The model with an encoder, multi-decoder, and quantization guarantees desired PRDN.
The proposed model offers higher CR than classical ECG methods for up to 10% PRDN.
The proposed model's runtime supports realtime ECG compression on wearable devices.

Le texte complet de cet article est disponible en PDF.

Keywords : ECG signal compression, Convolutional autoencoder (CAE), Transfer learning, ECG classification


Plan


© 2024  AGBM. Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 45 - N° 6

Article 100859- décembre 2024 Retour au numéro
Article précédent Article précédent
  • Comprehensive Review of Feature Extraction Techniques for sEMG Signal Classification: From Handcrafted Features to Deep Learning Approaches
  • Sidi Mohamed Sid'El Moctar, Imad Rida, Sofiane Boudaoud
| Article suivant Article suivant
  • Corrigendum to “Transition Network-Based Analysis of Electrodermal Activity Signals for Emotion Recognition” [IRBM 45 (2024) 100849]
  • Yedukondala Rao Veeranki, Hugo F. Posada-Quintero, Ramakrishnan Swaminathan

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Déjà abonné à cette revue ?

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2025 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.