S'abonner

Artificial Intelligence Assessment of Biological Age From Transthoracic Echocardiography: Discrepancies with Chronologic Age Predict Significant Excess Mortality - 01/08/24

Doi : 10.1016/j.echo.2024.04.017 
Kobi Faierstein, MD a, b, , Michael Fiman, BSc c, Ranel Loutati, MD a, Noa Rubin, BSc c, Uri Manor, MD a, b, Adiel Am-Shalom, BSc c, Michal Cohen-Shelly, BSc c, Nimrod Blank, MD d, Dor Lotan, MD e, Qiong Zhao, MD, PhD f, Ehud Schwammenthal, MD, PhD a, b, c, Robert Klempfner, MD a, b, c, Eyal Zimlichman, MD, MSc b, Ehud Raanani, MD a, b, c, Elad Maor, MD, PhD a, b, c
a Leviev Cardiovascular Institute, Sheba Medical Center, Ramat Gan, Israel 
b Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel 
c Aisap.ai, Ramat Gan, Israel 
d Echocardiography Unit, Division of Cardiovascular Medicine, Baruch-Padeh Medical Center, Poria, Israel 
e Division of Cardiology, Department of Medicine, NewYork-Presbyterian Hospital, Columbia University Irving Medical Center, New York, New York 
f Inova Heart and Vascular Institute, Inova Fairfax Hospital, Falls Church, Virginia 

Reprint requests: Kobi Faierstein, MD, The Olga & Lev Leviev Heart Center, Sheba Medical Center, Tel Hashomer, 52621 Ramat Gan, Israel.The Olga & Lev Leviev Heart CenterSheba Medical CenterTel HashomerRamat Gan52621Israel

Abstract

Background

Age and sex can be estimated using artificial intelligence on the basis of various sources. The aims of this study were to test whether convolutional neural networks could be trained to estimate age and predict sex using standard transthoracic echocardiography and to evaluate the prognostic implications.

Methods

The algorithm was trained on 76,342 patients, validated in 22,825 patients, and tested in 20,960 patients. It was then externally validated using data from a different hospital (n = 556). Finally, a prospective cohort of handheld point-of-care ultrasound devices (n = 319; ClinicalTrials.Gov identifier NCT05455541) was used to confirm the findings. A multivariate Cox regression model was used to investigate the association between age estimation and chronologic age with overall survival.

Results

The mean absolute error in age estimation was 4.9 years, with a Pearson correlation coefficient of 0.922. The probabilistic value of sex had an overall accuracy of 96.1% and an area under the curve of 0.993. External validation and prospective study cohorts yielded consistent results. Finally, survival analysis demonstrated that age prediction ≥5 years vs chronologic age was associated with an independent 34% increased risk for death during follow-up (P < .001).

Conclusions

Applying artificial intelligence to standard transthoracic echocardiography allows the prediction of sex and the estimation of age. Machine-based estimation is an independent predictor of overall survival and, with further evaluation, can be used for risk stratification and estimation of biological age.

Le texte complet de cet article est disponible en PDF.

Graphical abstract




Central Illustration : 

We aimed to investigate whether deep learning models are able to accurately estimate patients’ age and be used as a risk stratification tool. Applying artificial intelligence to standard transthoracic echocardiography (TTE) allows the prediction of sex and the estimation of age. Discrepancies between chronologic age and machine-estimated age correlate with mortality. Applying the same model to handheld devices demonstrated consistent results, emphasizing the importance of this tool in risk stratification and clinical evaluation.


Central IllustrationWe aimed to investigate whether deep learning models are able to accurately estimate patients’ age and be used as a risk stratification tool. Applying artificial intelligence to standard transthoracic echocardiography (TTE) allows the prediction of sex and the estimation of age. Discrepancies between chronologic age and machine-estimated age correlate with mortality. Applying the same model to handheld devices demonstrated consistent results, emphasizing the importance of this tool in risk stratification and clinical evaluation.

Le texte complet de cet article est disponible en PDF.

Highlights

Deep learning can accurately estimate age and sex on transthoracic echocardiography.
Machine-based age and sex estimation is associated with increased risk for mortality.
Machine learning algorithms may be used for risk stratification purposes.
Machine learning algorithms may enhance point-of-care ultrasound devices.

Le texte complet de cet article est disponible en PDF.

Keywords : Echocardiography, Point-of-care ultrasound, Artificial intelligence, Longevity

Abbreviations : ADG, AI, AUC, CNN, HR, IQR, LVEF, MAE, RMSE, POCUS


Plan


© 2024  American Society of Echocardiography. Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 37 - N° 8

P. 725-735 - août 2024 Retour au numéro
Article précédent Article précédent
  • Information for Readers
| Article suivant Article suivant
  • Beyond Years: Is Artificial Intelligence Ready to Predict Biological Age and Cardiovascular Risk Using Echocardiography?
  • Bjørnar Grenne, Andreas Østvik

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Déjà abonné à cette revue ?

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2024 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.