S'abonner

Beyond PDE4 inhibition: A comprehensive review on downstream cAMP signaling in the central nervous system - 23/07/24

Doi : 10.1016/j.biopha.2024.117009 
Zoë Donders a, b, 1, Iga Joanna Skorupska a, b, c, 1, Emily Willems a, b, Femke Mussen a, b, d, Jana Van Broeckhoven d, e, Aurélie Carlier c, 2, Melissa Schepers a, b, e, 2, Tim Vanmierlo a, b, e, , 2
a Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229ER, the Netherlands 
b Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium 
c Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht 6629ER, the Netherlands 
d Department of Immunology and Infection, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium 
e University MS Centre (UMSC) Hasselt – Pelt, Belgium 

Correspondence to: P.O. Box 616, Maastricht 6200MD, the Netherlands.P.O. Box 616Maastricht6200MDthe Netherlands

Abstract

Cyclic adenosine monophosphate (cAMP) is a key second messenger that regulates signal transduction pathways pivotal for numerous biological functions. Intracellular cAMP levels are spatiotemporally regulated by their hydrolyzing enzymes called phosphodiesterases (PDEs). It has been shown that increased cAMP levels in the central nervous system (CNS) promote neuroplasticity, neurotransmission, neuronal survival, and myelination while suppressing neuroinflammation. Thus, elevating cAMP levels through PDE inhibition provides a therapeutic approach for multiple CNS disorders, including multiple sclerosis, stroke, spinal cord injury, amyotrophic lateral sclerosis, traumatic brain injury, and Alzheimer's disease. In particular, inhibition of the cAMP-specific PDE4 subfamily is widely studied because of its high expression in the CNS. So far, the clinical translation of full PDE4 inhibitors has been hampered because of dose-limiting side effects. Hence, focusing on signaling cascades downstream activated upon PDE4 inhibition presents a promising strategy, offering novel and pharmacologically safe targets for treating CNS disorders. Yet, the underlying downstream signaling pathways activated upon PDE(4) inhibition remain partially elusive. This review provides a comprehensive overview of the existing knowledge regarding downstream mediators of cAMP signaling induced by PDE4 inhibition or cAMP stimulators. Furthermore, we highlight existing gaps and future perspectives that may incentivize additional downstream research concerning PDE(4) inhibition, thereby providing novel therapeutic approaches for CNS disorders.

Le texte complet de cet article est disponible en PDF.

Graphical Abstract




 : 

Overview of cAMP signaling in oligodendrocytes, microglia, astrocytes, and neurons. Promoting cAMP signaling by either using cAMP stimulators or inhibiting its breakdown enzyme PDE4 boosts different processes in the CNS. cAMP stimulates oligodendrocyte precursor cell differentiation and myelination through PKA and EPAC. PKA mediates these effects via CREB phosphorylation and stimulates ERK1/2, p38 MAPK, and JNK signaling, resulting in phosphorylation and activation of the transcription factor ATF. EPAC can also instigate oligodendrocyte functioning through Raf-mediated activation of ERK1/2, p38 MAPK, and JNK. Elevating cAMP levels in microglia and astrocytes predominately results in PKA-mediated anti-inflammatory effects. PKA can, directly or indirectly via AMPK, inhibit the translocation of NF-κB, leading to reduced production of pro-inflammatory cytokines. Additionally, PKA stimulates the gene expression of anti-inflammatory cytokines through activation of CREB directly or indirectly via JNK, p38 MAPK signaling. Further, EPAC and PKA can decrease neuroinflammation by phosphorylation, and hence inhibition, of GSK3β activity. Besides, EPAC can modulate the inflammatory phenotype of microglia and astrocytes by activating the transcription factor STAT3. Lastly, cAMP is a pivotal modulator in neuronal plasticity, transmission, and survival. Neuronal plasticity is mediated predominantly via PKA and downstream proteins VASP and ERK, leading to CREB activation and gene expression of BDNF, GluA, and Arg1. While PKA stimulates neuronal survival through JNK and CREB phosphorylation and inhibition of NF-κB, EPAC promotes neuronal apoptosis via p38 MAPK and PI3K/AKT/GSK3β/JNK. In addition, the release of multiple neurotransmitters, such as dopamine and glutamate, is promoted by cAMP via PKA/TH and EPAC/PLC signaling. Besides stimulating neurotransmitter release, PKA or indirect PKA/GluA1 promotes receptor trafficking to the plasma membrane. CNS, Central nervous system; AC, Adenylyl cyclase; cAMP, Cyclic adenosine monophosphate; PDE4, Phosphodiesterase 4; PKA, Protein kinase A; EPAC, Exchange proteins activated directly by cyclic AMP; PKC, Protein kinase C; CREB, cAMP-response element binding protein; ATF, Activating transcription factor family; ERK1/2, Extracellular signal-regulated kinase 1/2; MAPK, Mitogen-activated protein kinases; JNK, Jun N-terminal kinase; OPC, Oligodendrocyte precursor cell; AMPK, Adenosine monophosphate-activated protein kinase; GSK3β, Glycogen synthase kinase 3 beta; STAT3, Signal transducer and activator of transcription 3; NF-κB, Nuclear factor κ B; PI3K, Phosphoinositide 3-kinases; Akt, Protein kinase B; VASP, Vasodilator-stimulated phosphoprotein; BDNF, Brain derived neurotrophic factor; GluA, Glutamate transport ATP-binding protein; Arg1, Arginase 1; Bcl-2, B-cell leukemia/lymphoma 2 protein; TH, Tyrosine hydroxylase; PLC, Phospholipase C; DARP, Dopamine- and cAMP-regulated phosphoprotein, Mr 32 kDa; PP-1, Protein phosphatase 1; DAT, Dopamine transporter; GABAR, Gamma-aminobutyric acid receptor; AMPAR, α-Amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor.


Overview of cAMP signaling in oligodendrocytes, microglia, astrocytes, and neurons. Promoting cAMP signaling by either using cAMP stimulators or inhibiting its breakdown enzyme PDE4 boosts different processes in the CNS. cAMP stimulates oligodendrocyte precursor cell differentiation and myelination through PKA and EPAC. PKA mediates these effects via CREB phosphorylation and stimulates ERK1/2, p38 MAPK, and JNK signaling, resulting in phosphorylation and activation of the transcription factor ATF. EPAC can also instigate oligodendrocyte functioning through Raf-mediated activation of ERK1/2, p38 MAPK, and JNK. Elevating cAMP levels in microglia and astrocytes predominately results in PKA-mediated anti-inflammatory effects. PKA can, directly or indirectly via AMPK, inhibit the translocation of NF-κB, leading to reduced production of pro-inflammatory cytokines. Additionally, PKA stimulates the gene expression of anti-inflammatory cytokines through activation of CREB directly or indirectly via JNK, p38 MAPK signaling. Further, EPAC and PKA can decrease neuroinflammation by phosphorylation, and hence inhibition, of GSK3β activity. Besides, EPAC can modulate the inflammatory phenotype of microglia and astrocytes by activating the transcription factor STAT3. Lastly, cAMP is a pivotal modulator in neuronal plasticity, transmission, and survival. Neuronal plasticity is mediated predominantly via PKA and downstream proteins VASP and ERK, leading to CREB activation and gene expression of BDNF, GluA, and Arg1. While PKA stimulates neuronal survival through JNK and CREB phosphorylation and inhibition of NF-κB, EPAC promotes neuronal apoptosis via p38 MAPK and PI3K/AKT/GSK3β/JNK. In addition, the release of multiple neurotransmitters, such as dopamine and glutamate, is promoted by cAMP via PKA/TH and EPAC/PLC signaling. Besides stimulating neurotransmitter release, PKA or indirect PKA/GluA1 promotes receptor trafficking to the plasma membrane. CNS, Central nervous system; AC, Adenylyl cyclase; cAMP, Cyclic adenosine monophosphate; PDE4, Phosphodiesterase 4; PKA, Protein kinase A; EPAC, Exchange proteins activated directly by cyclic AMP; PKC, Protein kinase C; CREB, cAMP-response element binding protein; ATF, Activating transcription factor family; ERK1/2, Extracellular signal-regulated kinase 1/2; MAPK, Mitogen-activated protein kinases; JNK, Jun N-terminal kinase; OPC, Oligodendrocyte precursor cell; AMPK, Adenosine monophosphate-activated protein kinase; GSK3β, Glycogen synthase kinase 3 beta; STAT3, Signal transducer and activator of transcription 3; NF-κB, Nuclear factor κ B; PI3K, Phosphoinositide 3-kinases; Akt, Protein kinase B; VASP, Vasodilator-stimulated phosphoprotein; BDNF, Brain derived neurotrophic factor; GluA, Glutamate transport ATP-binding protein; Arg1, Arginase 1; Bcl-2, B-cell leukemia/lymphoma 2 protein; TH, Tyrosine hydroxylase; PLC, Phospholipase C; DARP, Dopamine- and cAMP-regulated phosphoprotein, Mr 32 kDa; PP-1, Protein phosphatase 1; DAT, Dopamine transporter; GABAR, Gamma-aminobutyric acid receptor; AMPAR, α-Amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor.

Le texte complet de cet article est disponible en PDF.

Highlights

cAMP is a vital second messenger in a myriad of neurological processes.
Raising cAMP through PDE4 inhibition is a therapeutic strategy for CNS disorders.
Knowledge gap: the effect of PDE4 inhibition on downstream cAMP signaling pathways.
Downstream players of the PDE4/cAMP pathway can be CNS disease targets.

Le texte complet de cet article est disponible en PDF.

Keywords : CAMP signaling, Phosphodiesterases, PDE4 inhibition, Central nervous system, Neurodegenerative diseases


Plan


© 2024  The Authors. Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 177

Article 117009- août 2024 Retour au numéro
Article précédent Article précédent
  • Decoding viral and host microRNA signatures in airway-derived biosamples: Insights for biomarker discovery in viral respiratory infections
  • Marta Molinero, Manel Perez-Pons, Jessica González, Ferran Barbé, David de Gonzalo-Calvo
| Article suivant Article suivant
  • SIRT1 signaling pathways in sarcopenia: Novel mechanisms and potential therapeutic targets
  • Luning Yang, Di Liu, Shide Jiang, Hengzhen Li, Lin Chen, Yuxiang Wu, Anko Elijah Essien, Michael Opoku, Shinen Naranmandakh, ShuGuang Liu, Qin Ru, Yusheng Li

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Déjà abonné à cette revue ?

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2024 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.