The investigation of potential mechanism of Fuzhengkangfu Decoction against Diabetic myocardial injury based on a combined strategy of network pharmacology, transcriptomics, and experimental verification - 23/07/24
Abstract |
Background and Objectives |
Diabetic cardiomyopathy (DCM) is a cardiac condition resulting from myocardial damage caused by diabetes mellitus (DM), currently lacking specific therapeutic interventions. Fuzhengkangfu decoction (FZK) plays an important role in the prevention and treatment of various cardiovascular diseases. However, the efficacy and potential mechanisms of FZK are not fully understood. This study aims to investigate the protective effect and mechanisms of FZK against DCM.
Methodologies |
Rats were given a high-calorie diet along with a low dosage of streptozotocin (STZ) to establish a rat model of DCM. The diabetic rats received FZK or normal saline subcutaneously for 12 weeks. Echocardiography was conducted to evaluate their heart function characteristics. Rat heart morphologies were assessed using Sirius Red staining and H&E staining. Transcriptome sequencing analysis and network pharmacology were used to reveal possible targets and mechanisms. Molecular docking was conducted to validate the association between the primary components of FZK and the essential target molecules. Finally, both in vitro and in vivo studies were conducted on the cardioprotective properties and mechanism of FZK.
Results |
According to the results of network pharmacology, FZK may prevent DCM by reducing oxidative stress and preventing apoptosis. Transcriptomics confirmed that FZK protected against DCM-induced myocardial fibrosis and remodelling, as predicted by network pharmacology, and suggested that FZK regulated the expression of oxidative stress and apoptosis-related proteins. Integrating network pharmacology and transcriptome analysis results revealed that the AGE-RAGE signalling pathway-associated MMP2, SLC2A1, NOX4, CCND1, and CYP1A1 might be key targets. Molecular docking showed that Poricoic acid A and 5-O-Methylvisammioside had the highest docking activities with these targets. We further conducted in vivo experiments, and the results showed that FZK significantly attenuated left ventricular remodelling, reduced myocardial fibrosis, and improved cardiac contractile function. And, our study demonstrated that FZK effectively reduced oxidative stress and apoptosis of cardiomyocytes. The data showed that Erk, NF-κB, and Caspase 3 phosphorylation was significantly inhibited, and Bcl-2/Bax was significantly increased after FZK treatment. In vitro, FZK significantly reduced AGEs-induced ROS increase and apoptosis in cardiomyocytes. Furthermore, FZK significantly inhibited the phosphorylation of Erk and NF-κB proteins and decreased the expression of MMP2. All the results confirmed that FZK inhibited the activation of the Erk/NF-κB pathway in AGE-RAGE signalling and alleviated oxidative stress and apoptosis of cardiomyocytes. In summary, we verified that FZK protects against DCM by inhibiting myocardial apoptotic remodelling through the suppression of the AGE-RAGE signalling pathway.
Conclusion |
In conclusion, our research indicates that FZK demonstrates anti-cardiac dysfunction properties by reducing oxidative stress and cardiomyocyte apoptosis through the AGE-RAGE pathway in DCM, showing potential for therapeutic use.
Le texte complet de cet article est disponible en PDF.Keywords : Diabetic cardiomyopathy, Traditional Chinese medicine, Oxidative stress and apoptosis, Network pharmacology, Transcriptomics
Plan
Vol 177
Article 117048- août 2024 Retour au numéroBienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.
Déjà abonné à cette revue ?