S'abonner

Development and Validation of a Natural Language Processing Model to Identify Low-Risk Pulmonary Embolism in Real Time to Facilitate Safe Outpatient Management - 18/07/24

Doi : 10.1016/j.annemergmed.2024.01.036 
Krunal D. Amin, MD a, , Elizabeth Hope Weissler, MD b, William Ratliff, MBA c, Alexander E. Sullivan, MD d, Tara A. Holder, MD d, Cathleen Bury, MD b, Samuel Francis, MD b, Brent Jason Theiling, MD, MS b, Bradley Hintze, BS c, Michael Gao, BS c, Marshall Nichols, MS c, Suresh Balu, MBA c, William Schuyler Jones, MD e, Mark Sendak, MD, MPP c
a Department of Medicine, Duke University School of Medicine, Durham, NC 
b Department of Surgery, Duke University School of Medicine, Durham, NC 
c Duke Institute for Health Innovation, Durham, NC 
d Division of Cardiology, Vanderbilt University Medical Center, Nashville, TN 
e Division of Cardiology, Department of Medicine, Duke University School of Medicine, Durham, NC 

Corresponding Author.

Abstract

Study objective

This study aimed to (1) develop and validate a natural language processing model to identify the presence of pulmonary embolism (PE) based on real-time radiology reports and (2) identify low-risk PE patients based on previously validated risk stratification scores using variables extracted from the electronic health record at the time of diagnosis. The combination of these approaches yielded an natural language processing-based clinical decision support tool that can identify patients presenting to the emergency department (ED) with low-risk PE as candidates for outpatient management.

Methods

Data were curated from all patients who received a PE-protocol computed tomography pulmonary angiogram (PE-CTPA) imaging study in the ED of a 3-hospital academic health system between June 1, 2018 and December 31, 2020 (n=12,183). The “preliminary” radiology reports from these imaging studies made available to ED clinicians at the time of diagnosis were adjudicated as positive or negative for PE by the clinical team. The reports were then divided into development, internal validation, and temporal validation cohorts in order to train, test, and validate an natural language processing model that could identify the presence of PE based on unstructured text. For risk stratification, patient- and encounter-level data elements were curated from the electronic health record and used to compute a real-time simplified pulmonary embolism severity (sPESI) score at the time of diagnosis. Chart abstraction was performed on all low-risk PE patients admitted for inpatient management.

Results

When applied to the internal validation and temporal validation cohorts, the natural language processing model identified the presence of PE from radiology reports with an area under the receiver operating characteristic curve of 0.99, sensitivity of 0.86 to 0.87, and specificity of 0.99. Across cohorts, 10.5% of PE-CTPA studies were positive for PE, of which 22.2% were classified as low-risk by the sPESI score. Of all low-risk PE patients, 74.3% were admitted for inpatient management.

Conclusion

This study demonstrates that a natural language processing-based model utilizing real-time radiology reports can accurately identify patients with PE. Further, this model, used in combination with a validated risk stratification score (sPESI), provides a clinical decision support tool that accurately identifies patients in the ED with low-risk PE as candidates for outpatient management.

Le texte complet de cet article est disponible en PDF.

Plan


 Supervising editor: Stephen Schenkel, MD, MPP. Specific detailed information about possible conflict of interest for individual editors is available at editors.
 Author contributions: AS and SJ developed and wrote the initial proposal for this project. KA, EHW, WR, BH, MG, and MN contributed to data gathering, data curation, and model development. KA drafted and incorporated revisions for all versions of the manuscript. Edits to the manuscript were provided by all authors. AS, TH, CB, SF, BJT, and SJ served as clinical liaisons for the project and provided suggestions and feedback for model and project development. MS takes responsibility for the study as a whole.
 Data sharing statement: The data dictionary and analytic code for this investigation are available on request from the date of article publication by contacting Mark Sendak, MD, at mark.sendak@duke.edu.
 Authorship: All authors attest to meeting the four ICMJE.org authorship criteria: (1) Substantial contributions to the conception or design of the work; or the acquisition, analysis, or interpretation of data for the work; AND (2) Drafting the work or revising it critically for important intellectual content; AND (3) Final approval of the version to be published; AND (4) Agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.
 Funding and support: By Annals’ policy, all authors are required to disclose any and all commercial, financial, and other relationships in any way related to the subject of this article as per ICMJE conflict of interest guidelines (see www.icmje.org/). Funding for this study was provided by the Duke Institute for Health Innovation Award (2020). The authors have declared that no competing interests exist.
 Presentation information: This study was presented at the Machine Learning for Healthcare Conference (virtual) on August 6, 2021.
 Please see page 119 for the Editor’s Capsule Summary of this article.
 A podcast for this article is available at www.annemergmed.com.
 Readers: click on the link to go directly to a survey in which you can provide DYTD8GY to Annals on this particular article.


© 2024  American College of Emergency Physicians. Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 84 - N° 2

P. 118-127 - août 2024 Retour au numéro
Article précédent Article précédent
  • Concordance Between Electronic Health Record-Recorded Race and Ethnicity and Patient Report in Emergency Department Patients
  • Nicholas R. Pettit, Kathleen A. Lane, Leslie Gibbs, Paul Musey, Xiaochun Li, Joshua R. Vest
| Article suivant Article suivant
  • Harnessing the Power of Generative AI for Clinical Summaries: Perspectives From Emergency Physicians
  • Yuval Barak-Corren, Rebecca Wolf, Ronen Rozenblum, Jessica K. Creedon, Susan C. Lipsett, Todd W. Lyons, Kenneth A. Michelson, Kelsey A. Miller, Daniel J. Shapiro, Ben Y. Reis, Andrew M. Fine

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Déjà abonné à cette revue ?

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2024 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.