S'abonner

A Predictive Algorithm for Discriminating Myeloid Malignancies and Leukemoid Reactions - 26/06/24

Doi : 10.1016/j.amjmed.2024.03.015 
Varun Iyengar, MD a, b, g, Austin Meyer, MD, PhD c, Eleanor Stedman, MD d, Sadie Casale, BA e, Simran Kalsi, BA e, Andrew J. Hale, MD f, Jason A. Freed, MD g, h,
a Department of Internal Medicine, Beth Israel Deaconess Medical Center, Boston, Mass 
b Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 
c Machine Intelligence Group for the betterment of Health and the Environment (MIGHTE), Network Science Institute, Northeastern University, Boston, Mass 
d Department of Internal Medicine, University of Vermont Medical Center, Burlington 
e Larner College of Medicine at The University of Vermont, Burlington 
f Division of Infectious Diseases, University of Vermont Medical Center, Burlington 
g Division of Hematology and Hematologic Malignancies, Beth Israel Deaconess Medical Center, Boston, Mass 
h Harvard Medical School, Boston, Mass 

Requests for reprints should be addressed to Jason A. Freed, MD, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215Beth Israel Deaconess Medical Center330 Brookline AveBostonMA02215

Highlights

Machine learning-based algorithms can differentiate between hematologic malignancies and leukemoid reactions with sensitivity and specificity exceeding 95%.
Twelve-month mortality is approximately 6 times higher in those diagnosed with leukemoid reactions relative to those diagnosed with myeloid malignancies.
Machine learning offers a powerful tool to help clinicians rapidly triage management in cases of hyperleukocytosis.

Le texte complet de cet article est disponible en PDF.

Abstract

Background

Adults presenting with a neutrophil-predominant leukocytosis (white cell count >50,000/μL) often necessitate urgent medical management. These patients are diagnosed with either acute presentations of chronic myeloid malignancies or leukemoid reactions, yet accurate models to distinguish between these entities do not exist. We used demographic and lab data to build a machine learning model capable of discriminating between these diagnoses.

Methods

The medical record at a tertiary care medical center was queried to identify adults with instances of white counts greater than 50,000/μL and >50% neutrophils from 2000 to 2021. For each patient, a full set of demographic and lab values were extracted at the time of their first presentation with a white count >50,000/μL. We generated a series of models in which the parameters most predictive of myeloid malignancies were identified, and a supervised machine learning approach was applied to the dataset.

Results

Our best model—using a support vector machine algorithm—produced a sensitivity of 96% and a specificity of 95.9% (area under the curve = 0.982) for identifying myeloid malignancies. We also identified a clinically meaningful and significant disparity in outcomes based on diagnosis—a 6-fold increase in 12-month mortality in those diagnosed with leukemoid reactions.

Conclusions

These findings need to be validated but fill an unmet need for timely and accurate diagnosis in the setting of profound, neutrophil-predominant leukocytosis and support the use of predictive models as a means to improve patient outcomes.

Le texte complet de cet article est disponible en PDF.

Keywords : Leukemoid reaction, Machine learning, Myeloid malignancy


Plan


 Funding: None.
 Conflicts of Interest: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
 Authorship: All authors critically reviewed and approved the final manuscript.


© 2024  Elsevier Inc. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 137 - N° 7

P. 658-665 - juillet 2024 Retour au numéro
Article précédent Article précédent
  • Autonomic Nerve Function Predicts Risk of Early Death after Discharge in Acute Medical Disease
  • Rakin Hadad, Steen B. Haugaard, Philip Bonde Christensen, Ayse Sarac, Maria Helena Dominguez, Ahmad Sajadieh
| Article suivant Article suivant
  • Do We Need Fasting Prior to Coronary Angiography? The CORO-NF Randomized Pragmatic Study
  • Pietro Paolo Tamborrino, Laura Papi, Laura Michelotti, Carlo Vitale, Paolo Caravelli, Anna Sonia Petronio, Emilia Terlizzi, Ludovica Della Volpe, Mihaela Virlan, Annamaria Sardanelli, Riccardo Morganti, Raffaele De Caterina

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Déjà abonné à cette revue ?

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2025 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.