S'abonner

Discrete placental gene expression signatures accompany diabetic disease classifications during pregnancy - 14/06/24

Doi : 10.1016/j.ajog.2024.05.014 
Enrico R. Barrozo, PhD a, Diana A. Racusin, MD a, Michael D. Jochum, PhD a, Brandon T. Garcia, BS a, b, c, Melissa A. Suter, PhD a, Melanie Delbeccaro, MD a, Cynthia Shope, MS a, Kathleen Antony, MD a, Kjersti M. Aagaard, MD, PhD a,
a Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX 
b Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 
c Genetics & Genomics Graduate Program, Baylor College of Medicine, Houston, TX 

Corresponding author: Kjersti M. Aagaard, MD, PhD.
Sous presse. Épreuves corrigées par l'auteur. Disponible en ligne depuis le Friday 14 June 2024

Abstract

Background

Gestational diabetes mellitus affects up to 10% of pregnancies and is classified into subtypes gestational diabetes subtype A1 (GDMA1) (managed by lifestyle modifications) and gestational diabetes subtype A2 (GDMA2) (requiring medication). However, whether these subtypes are distinct clinical entities or more reflective of an extended spectrum of normal pregnancy endocrine physiology remains unclear.

Objective

Integrated bulk RNA-sequencing (RNA-seq), single-cell RNA-sequencing (scRNA-seq), and spatial transcriptomics harbors the potential to reveal disease gene signatures in subsets of cells and tissue microenvironments. We aimed to combine these high-resolution technologies with rigorous classification of diabetes subtypes in pregnancy. We hypothesized that differences between preexisting type 2 and gestational diabetes subtypes would be associated with altered gene expression profiles in specific placental cell populations.

Study Design

In a large case-cohort design, we compared validated cases of GDMA1, GDMA2, and type 2 diabetes mellitus (T2DM) to healthy controls by bulk RNA-seq (n=54). Quantitative analyses with reverse transcription and quantitative PCR of presumptive genes of significant interest were undertaken in an independent and nonoverlapping validation cohort of similarly well-characterized cases and controls (n=122). Additional integrated analyses of term placental single-cell, single-nuclei, and spatial transcriptomics data enabled us to determine the cellular subpopulations and niches that aligned with the GDMA1, GDMA2, and T2DM gene expression signatures at higher resolution and with greater confidence.

Results

Dimensional reduction of the bulk RNA-seq data revealed that the most common source of placental gene expression variation was the diabetic disease subtype. Relative to controls, we found 2052 unique and significantly differentially expressed genes (−2<Log2[fold-change]>2 thresholds; q<0.05 Wald Test) among GDMA1 placental specimens, 267 among GDMA2, and 1520 among T2DM. Several candidate marker genes (chorionic somatomammotropin hormone 1 [CSH1], period circadian regulator 1 [PER1], phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit beta [PIK3CB], forkhead box O1 [FOXO1], epidermal growth factor receptor [EGFR], interleukin 2 receptor subunit beta [IL2RB], superoxide dismutase 3 [SOD3], dedicator of cytokinesis 5 [DOCK5], suppressor of glucose, and autophagy associated 1 [SOGA1]) were validated in an independent and nonoverlapping validation cohort (q<0.05 Tukey). Functional enrichment revealed the pathways and genes most impacted for each diabetes subtype, and the degree of proximal similarity to other subclassifications. Surprisingly, GDMA1 and T2DM placental signatures were more alike by virtue of increased expression of chromatin remodeling and epigenetic regulation genes, while albumin was the top marker for GDMA2 with increased expression of placental genes in the wound healing pathway. Assessment of these gene signatures in single-cell, single-nuclei, and spatial transcriptomics data revealed high specificity and variability by placental cell and microarchitecture types. For example, at the cellular and spatial (eg, microarchitectural) levels, distinguishing features were observed in extravillous trophoblasts (GDMA1) and macrophages (GDMA2). Lastly, we utilized these data to train and evaluate 4 machine learning models to estimate our confidence in predicting the control or diabetes status of placental transcriptome specimens with no available clinical metadata.

Conclusion

Consistent with the distinct association of perinatal outcome risk, placentae from GDMA1, GDMA2, and T2DM-affected pregnancies harbor unique gene signatures that can be further distinguished by altered placental cellular subtypes and microarchitectural niches.

Le texte complet de cet article est disponible en PDF.

Video


(16.23 Mo)

Le texte complet de cet article est disponible en PDF.

Key words : diabetes, GDM, GDMA, RNA-seq, scRNA-seq, T2DM, transcriptomics, Visium


Plan


 The authors report no conflict of interest.
 This study was supported in part by NIH grants to K.M.A. (R24DK090964, R01NR014792, R01DK089201, and R01HD091731) and the March of Dimes Prematurity Initiative. E.R.B. was supported by a National Science Foundation Postdoctoral Fellowship (Award #2208903) and a Career Development Award from the American Society of Gene & Cell Therapy. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. The authors acknowledge the Submitting Investigators of dbGaP accessions phs001886.v1.p1, phs001886.v2.p1, and phs001886.v3, their primary funding organizations (NICHD and Wayne State University), and dbGaP.
 Presented as Oral Abstract #87 at the Society for Maternal Fetal Medicine's 43rd Annual Pregnancy Meeting, Feb. 6th–11th, 2023.
 Cite this article as: Barrozoa ER, Racusina DA, Jochum MD, et al. Discrete placental gene expression signatures accompany diabetic disease classifications during pregnancy. Am J Obstet Gynecol 2024;XXX:XX–XX.


© 2024  The Author(s). Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Déjà abonné à cette revue ?

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2024 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.