S'abonner

MMANet: A Multi-Task Residual Network for Alzheimer's Disease Classification and Brain Age Prediction - 12/06/24

Doi : 10.1016/j.irbm.2024.100840 
Chengyi Qian, Yuanjun Wang
 School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China 

Corresponding author.

Abstract

Objective: Alzheimer's disease (AD) is an irreversible neurodegenerative disease, while mild cognitive impairment (MCI) is a clinical precursor of AD, thus differentiation of AD, MCI and normal control (NC) from noninvasive magnetic resonance imaging (MRI) has positive clinical implications. Material and method: We utilize a 3D residual network to classify AD, MCI, and NC, and add a multiscale module to the original network to enhance the feature representation capability of the network, as well as a cross-dimensional attentional mechanism to enhance the network's attention to important brain regions. We experimentally verified that the network is more inclined to overestimate the brain age of patients in AD and MCI subgroups, thus proving that there is a high correlation between the brain age prediction task and the AD classification task. Therefore, we adopted a multi-task learning approach, using brain age prediction as a supplementary task for AD classification to reduce the risk of overfitting of the network during the training process. Results: Our method achieved 96.02% accuracy, 93.40% precision, 91.48% recall, and 92.24% F1 value in AD/MCI/NC classification. Conclusions: Ablation experiments confirmed that our proposed cross-dimensional attention and multiscale modules can improve the diagnostic performance of AD and MCI, and that multi-task learning in conjunction with brain age prediction can further improve the performance.

Le texte complet de cet article est disponible en PDF.

Graphical abstract

Le texte complet de cet article est disponible en PDF.

Highlights

Multi-task learning for Alzheimer's disease classification & brain age prediction.
Cross-dimensional attention and multi-scale modules improved network performance.
Neural network heatmap reflecting key brain regions for interpretability analysis.

Le texte complet de cet article est disponible en PDF.

Keywords : Alzheimer's disease, Mild cognitive impairment, Deep learning, Image classification, Multitasking learning


Plan


© 2024  AGBM. Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 45 - N° 3

Article 100840- juin 2024 Retour au numéro
Article précédent Article précédent
  • Exploring Technology-Driven Technology Roadmaps (TRM) for Wearable Biosensors in Healthcare
  • Yu-Hui Wang
| Article suivant Article suivant
  • Overdistention Accelerates Electrophysiological Changes in Uterine Muscle Towards Labour in Multiple Gestations
  • Alba Diaz-Martinez, Gema Prats-Boluda, Rogelio Monfort-Ortiz, Javier Garcia-Casado, Alba Roca-Prats, Enrique Tormo-Crespo, Félix Nieto-del-Amor, Vicente-José Diago-Almela, Yiyao Ye-Lin

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Déjà abonné à cette revue ?

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2024 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.