S'abonner

Agnostic identification of plasma biomarkers for postpartum hemorrhage risk - 30/05/24

Doi : 10.1016/j.ajog.2024.04.050 
Stéphanie E. Reitsma, PhD a, Julia R. Barsoum, MD b, Kirk C. Hansen, PhD c, Alexa M. Sassin, MD d, e, Monika Dzieciatkowska, PhD c, Andra H. James, MD, MPH f, g, Kjersti M. Aagaard, MD, PhD d, e, Homa K. Ahmadzia, MD, MPH b, , Alisa S. Wolberg, PhD a,
a Department of Pathology and Laboratory Medicine and UNC Blood Research Center, University of North Carolina School of Medicine, Chapel Hill, NC 
b Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, The George Washington University School of Medicine and Health Science, Washington DC 
c Biochemistry and Molecular Genetics, The University of Colorado Anschutz Medical Campus, Aurora, CO 
d Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 
e Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 
f Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology Duke University School of Medicine, Durham, NC 
g Department of Medicine under Hematology, Duke University School of Medicine, Durham, NC 

Corresponding authors: Alisa S. Wolberg, PhD.Homa K. Ahmadzia, MD, MPH.
Sous presse. Épreuves corrigées par l'auteur. Disponible en ligne depuis le Thursday 30 May 2024

Abstract

Background

Postpartum hemorrhage is difficult to predict, is associated with significant maternal morbidity, and is the leading cause of maternal mortality worldwide. The identification of maternal biomarkers that can predict increased postpartum hemorrhage risk would enhance clinical care and may uncover mechanisms that lead to postpartum hemorrhage.

Objective

This retrospective case-control study employed agnostic proteomic profiling of maternal plasma samples to identify differentially abundant proteins in controls and postpartum hemorrhage cases.

Study Design

Maternal plasma samples were procured from a cohort of >60,000 participants in a single institution’s perinatal repository. Postpartum hemorrhage was defined as a decrease in hematocrit of ≥10% or receipt of transfusion within 24 hours after delivery. Postpartum hemorrhage cases (n=30) were matched by maternal age and delivery mode (vaginal or cesarean) with controls (n=56). Mass spectrometry was used to identify differentially abundant proteins using integrated peptide peak areas. Statistically significant differences between groups were defined as P<.05 after controlling for multiple comparisons.

Results

By study design, cases and controls did not differ in race, ethnicity, gestational age at delivery, blood type, or predelivery platelet count. Cases had slightly but significantly lower predelivery and postdelivery hematocrit and hemoglobin. Mass spectrometry detected 1140 proteins, including 77 proteins for which relative abundance differed significantly between cases and controls (fold change >1.15, P<.05). Of these differentially abundant plasma proteins, most had likely liver or placental origins. Gene ontology term analysis mapped to protein clusters involved in responses to wound healing, stress response, and host immune defense. Significantly differentially abundant proteins with the highest fold change (prostaglandin D2 synthase, periostin, and several serine protease inhibitors) did not correlate with predelivery hematocrit or hemoglobin but identified postpartum hemorrhage cases with logistic regression modeling revealing good-to-excellent area under the operator receiver characteristic curves (0.802–0.874). Incorporating predelivery hemoglobin with these candidate proteins further improved the identification of postpartum hemorrhage cases.

Conclusion

Agnostic analysis of maternal plasma samples identified differentially abundant proteins in controls and postpartum hemorrhage cases. Several of these proteins are known to participate in biologically plausible pathways for postpartum hemorrhage risk and have potential value for predicting postpartum hemorrhage. These findings identify candidate protein biomarkers for future validation and mechanistic studies.

Le texte complet de cet article est disponible en PDF.

Video


(9.5 Mo)

Le texte complet de cet article est disponible en PDF.

Key words : biomarker, hemostasis, maternal mortality, postpartum hemorrhage, proteomics


Plan


 H.K.A. and A.S.W. are senior authors.
 The authors report no conflict of interest.
 Presented as SMFM 43rd Annual Pregnancy Meeting in San Francisco, CA, February 6–11, 2023.
 This study was supported by an American Heart Association postdoctoral award to S.E.R. (23POST1019349) and the National Institutes of Health, National Heart, Lung, and Blood Institute (K23HL141640 to H.K.A.; R01HL126974 and R33HL141791 to A.S.W.).
 Cite this article as: Reitsma SE, Barsoum JR, Hansen KC, et al. Agnostic identification of plasma biomarkers for postpartum hemorrhage risk. Am J Obstet Gynecol 2024;XX:x.ex–x.ex.


© 2024  Elsevier Inc. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Déjà abonné à cette revue ?

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2024 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.