S'abonner

Assessment of the CLOT (children's likelihood of thrombosis) real-time risk prediction model of hospital-associated venous thromboembolism in children with congenital heart disease - 04/05/24

Doi : 10.1016/j.ahj.2024.03.012 
Sudeep D. Sunthankar, MD, MSCI a, , Ryan P. Moore, MS b, #, Daniel W. Byrne, MS b, Henry J. Domenico, MS b, Allison P. Wheeler, MD, MSCI c, d, Shannon C. Walker, MD c, d, Prince J. Kannankeril, MD, MSCI a
a Thomas P. Graham Jr. Division of Pediatric Cardiology and Center for Pediatric Precision Medicine, Department of Pediatrics, Monroe Carell Jr. Children's Hospital at Vanderbilt and Vanderbilt University Medical Center, Nashville, TN 
b Department of Biostatistics, Vanderbilt University, Nashville, TN 
c Department of Pathology, Microbiology, & Immunology, Vanderbilt University Medical Center, Nashville, TN 
d Divisions of Pediatric Hematology and Oncology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 

Reprint requests: Sudeep D. Sunthankar, MD MSCI, Thomas P. Graham Jr Division of Pediatric Cardiology, Department of Pediatrics, Monroe Carell Jr Children's Hospital at Vanderbilt, 2220 Children's Way, Suite 5230, Nashville, TN.Thomas P. Graham Jr Division of Pediatric CardiologyDepartment of PediatricsMonroe Carell Jr Children's Hospital at Vanderbilt2220 Children's Way, Suite 5230NashvilleTN

Abstract

Background

Children with congenital heart disease (CHD) are at high risk for hospital-associated venous thromboembolism (HA-VTE). The children's likelihood of thrombosis (CLOT) trial validated a real-time predictive model for HA-VTE using data extracted from the EHR for pediatric inpatients. We tested the hypothesis that addition of CHD specific data would improve model prediction in the CHD population.

Methods

Model performance in CHD patients from 2010 to 2022, was assessed using 3 iterations of the CLOT model: 1) the original CLOT model, 2) the original model refit using only data from the CHD cohort, and 3) the model updated with the addition of cardiopulmonary bypass time, STAT Mortality Category, height, and weight as covariates. The discrimination of the three models was quantified and compared using AUROC.

Results

Our CHD cohort included 1457 patient encounters (median 2.0 IQR [0.5-5.2] years-old). HA-VTE was present in 5% of our CHD cohort versus 1% in the general pediatric population. Several features from the original model were associated with thrombosis in the CHD cohort including younger age, thrombosis history, infectious disease consultation, and EHR coding of a central venous line. Lower height and weight were associated with thrombosis. HA-VTE rate was 12% (18/149) amongst those with STAT Category 4-5 operation versus 4% (49/1256) with STAT Category 1-3 operation (P < .001). Longer cardiopulmonary bypass time (124 [92-205] vs. 94 [65–136] minutes, P < .001) was associated with thrombosis. The AUROC for the original (0.80 95% CI [0.75-0.85]), refit (0.85 [0.81-0.89]), and updated (0.86 [0.81-0.90]) models demonstrated excellent discriminatory ability within the CHD cohort.

Conclusion

The automated approach with EHR data extraction makes the applicability of such models appealing for ease of clinical use. The addition of cardiac specific features improved model discrimination; however, this benefit was marginal compared to refitting the original model to the CHD cohort. This suggests strong predictive generalized models, such as CLOT, can be optimized for cohort subsets without additional data extraction, thus reducing cost of model development and deployment.

Le texte complet de cet article est disponible en PDF.

Graphical Abstract




Image, graphical abstract

Le texte complet de cet article est disponible en PDF.

Plan


© 2024  The Author(s). Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 272

P. 37-47 - juin 2024 Retour au numéro
Article précédent Article précédent
  • Ticagrelor with or without aspirin following percutaneous coronary intervention in high-risk patients with concomitant peripheral artery disease: A subgroup analysis of the TWILIGHT randomized clinical trial
  • Mitchell Krucoff, Alessandro Spirito, Usman Baber, Samantha Sartori, Dominick J. Angiolillo, Carlo Briguori, David J. Cohen, Timothy Collier, George Dangas, Dariusz Dudek, Javier Escaned, C. Michael Gibson, Ya-Ling Han, Kurt Huber, Adnan Kastrati, Upendra Kaul, Ran Kornowski, Vijay Kunadian, Birgit Vogel, Shamir R. Mehta, David Moliterno, Gennaro Sardella, Richard A. Shlofmitz, Samin Sharma, Philippe Gabriel Steg, Stuart Pocock, Roxana Mehran
| Article suivant Article suivant
  • Predicting the risk of 1-year mortality among patients hospitalized for acute heart failure in China
  • Lihua Zhang, Wei Wang, Xiqian Huo, Guangda He, Yanchen Liu, Yan Li, Lubi Lei, Jingkuo Li, Boxuan Pu, Yue Peng, Jing Li

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Déjà abonné à cette revue ?

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2024 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.