Maximakinin reversed H2O2 induced oxidative damage in rat cardiac H9c2 cells through AMPK/Akt and AMPK/ERK1/2 signaling pathways - 27/04/24
Abstract |
Maximakinin (MK), a homolog of bradykinin (BK), is extracted from skin venom of the Chinese toad Bombina maxima. Although MK has a good antihypertensive effect, its effect on myocardial cells is unclear. This study investigates the protective effect of MK on hydrogen peroxide (H2O2)-induced oxidative damage in rat cardiac H9c2 cells and explores its mechanism of action. A 3-(4,5-Dimethyl-2-Thiazolyl)-2,5-Diphenyl Tetrazolium Bromide (MTT) assay was selected to detect the effect of MK on H9c2 cell viability, while flow cytometry was used to investigate the influence of MK and H2O2 on intracellular reactive oxygen species (ROS) levels. Protein expression changes were detected by western blot. In addition, specific protein inhibitors were applied to confirm the induction of ROS-related signaling pathways by MK. MTT assay results show that MK significantly reversed H2O2-induced cell growth inhibition. Flow cytometry Dichlorodihydrofluorescein diacetate (DCFH-DA) staining shows that MK significantly reversed H2O2-induced increases in intracellular ROS production in H9c2 cells. Moreover, the addition of specific protein inhibitors suggests that MK reverses H2O2-induced oxidative damage by activating AMP-activated protein kinase (AMPK)/protein kinase B (Akt) and AMPK/extracellular-regulated kinase 1/2 (ERK1/2) pathways. Finally, an inhibitor of bradykinin B2 receptors (B2Rs), HOE-140, was applied to investigate potential targets of MK in H9c2 cells. HOE-140 significantly blocked induction of AMPK/Akt and AMPK/ERK1/2 pathways by MK, suggesting a potentially important role for B2Rs in MK reversing H2O2-induced oxidative damage. Above all, MK protects against oxidative damage by inhibiting H2O2-induced ROS production in H9c2 cells. The protective mechanism of MK may be achieved by activation of B2Rs to activate downstream AMPK/Akt and AMPK/ERK1/2 pathways.
Le texte complet de cet article est disponible en PDF.Graphical Abstract |
Highlights |
• | MK protects against oxidative damage in H9c2 cells. |
• | MK reversed H2O2 induced ROS production. |
• | MK activates AMPK/Akt and AMPK/ERK1/2 pathways. |
• | B2Rs play a core role in the process of MK reversing oxidative damage. |
Abbreviations : MK, BK, MTT, H2O2, ROS, B2Rs, AMPK, Akt, ERK1/2, VECs, NO, ENOS, VSMCs, MAPK
Keywords : Bradykinin B2 receptors, maximakinin, myocardial cells, oxidative damage, protective effect
Plan
Vol 174
Article 116489- mai 2024 Retour au numéroBienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.
Déjà abonné à cette revue ?